80 research outputs found

    The Gammaherpesvirus m2 Protein Manipulates the Fyn/Vav Pathway through a Multidocking Mechanism of Assembly

    Get PDF
    To establish latent infections in B-cells, gammaherpesviruses express proteins in the infected B-cells of the host that spuriously activate signalling pathways located downstream of the B-cell receptor. One such protein is M2, a murine gammaherpesvirus 68-encoded molecule that activates the Vav1/Rac1 pathway via the formation of trimolecular complexes with Scr family members. Previous reports have shown that the formation of this heteromolecular complex involves interactions between a proline rich region of M2 and the Vav1 and Fyn SH3 domains. Here, we show that the optimal association of these proteins requires a second structural motif encompassing two tyrosine residues (Tyr120 and 129). These residues are inducibly phosphorylated by Fyn in non-hematopoietic cells and constitutively phosphorylated in B-cells. We also demonstrate that the phosphorylation of Tyr120 creates specific docking sites for the SH2 domains of both Vav1 and Fyn, a condition sine qua non for the optimal association of these two signalling proteins in vivo. Interestingly, signaling experiments indicate that the expression of M2 in B-cells promotes the tyrosine phosphorylation of Vav1 and additional signaling proteins, a biological process that requires the integrity of both the M2 phosphotyrosine and proline rich region motifs. By infecting mice with viruses mutated in the m2 locus, we show that the integrity of each of these two M2 docking motifs is essential for the early steps of murine gammaherpesvirus-68 latency. Taken together, these results indicate that the M2 phosphotyrosine motif and the previously described M2 proline rich region work in a concerted manner to manipulate the signaling machinery of the host B-cell

    Force Generation upon T Cell Receptor Engagement

    Get PDF
    T cells are major players of adaptive immune response in mammals. Recognition of an antigenic peptide in association with the major histocompatibility complex at the surface of an antigen presenting cell (APC) is a specific and sensitive process whose mechanism is not fully understood. The potential contribution of mechanical forces in the T cell activation process is increasingly debated, although these forces are scarcely defined and hold only limited experimental evidence. In this work, we have implemented a biomembrane force probe (BFP) setup and a model APC to explore the nature and the characteristics of the mechanical forces potentially generated upon engagement of the T cell receptor (TCR) and/or lymphocyte function-associated antigen-1 (LFA-1). We show that upon contact with a model APC coated with antibodies towards TCR-CD3, after a short latency, the T cell developed a timed sequence of pushing and pulling forces against its target. These processes were defined by their initial constant growth velocity and loading rate (force increase per unit of time). LFA-1 engagement together with TCR-CD3 reduced the growing speed during the pushing phase without triggering the same mechanical behavior when engaged alone. Intracellular Ca2+ concentration ([Ca2+]i) was monitored simultaneously to verify the cell commitment in the activation process. [Ca2+]i increased a few tens of seconds after the beginning of the pushing phase although no strong correlation appeared between the two events. The pushing phase was driven by actin polymerization. Tuning the BFP mechanical properties, we could show that the loading rate during the pulling phase increased with the target stiffness. This indicated that a mechanosensing mechanism is implemented in the early steps of the activation process. We provide here the first quantified description of force generation sequence upon local bidimensional engagement of TCR-CD3 and discuss its potential role in a T cell mechanically-regulated activation process

    T Cells' Immunological Synapses Induce Polarization of Brain Astrocytes In Vivo and In Vitro: A Novel Astrocyte Response Mechanism to Cellular Injury

    Get PDF
    Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown.Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes.Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV infection), anti-transplant, autoimmune, or anti-tumor immune responses in vivo and in vitro

    Signals controlling lytic granule polarization at the cytotoxic immune synapse

    Get PDF
    Cytotoxic immunity relies on specialized effector T cells, the cytotoxic T cells, which are endowed with specialized cytolytic machinery that permits them to induce death of their targets. Upon recognition of a target cell, cytotoxic T cells form a lytic immune synapse and by docking the microtubule-organizing center at the synaptic membrane get prepared to deliver a lethal hit of enzymes contained in lytic granules. New insights suggest that the directionality of lytic granule trafficking along the microtubules represents a fine means to tune the functional outcome of the encounter between a T cell and its target. Thus, mechanisms regulating the directionality of granule transport may have a major impact in settings characterized by evasion from the cytotoxic response, such as chronic infection and cancer. Here, we review our current knowledge on the signaling pathways implicated in the polarized trafficking at the immune synapse of cytotoxic T cells, complementing it with information on the regulation of this process in natural killer cells. Furthermore, we highlight some of the parameters which we consider critical in studying the polarized trafficking of lytic granules, including the use of freshly isolated cytotoxic T cells, and discuss some of the major open questions

    Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling

    Get PDF
    Following endocytosis into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multiprotein complex that orchestrates cargo retrieval and recycling and, importantly, is biochemically and functionally distinct from the established retromer pathway. We have called this complex 'retriever'; it is a heterotrimer composed of DSCR3, C16orf62 and VPS29, and bears striking similarity to retromer. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to CCC (CCDC93, CCDC22, COMMD) and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1 integrin. Through quantitative proteomic analysis, we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, that require SNX17-retriever to maintain their surface levels. Our\ua0identification of retriever establishes a major endosomal retrieval and recycling pathway

    Microfluidic Organoid Cultures Derived from Pancreatic Cancer Biopsies for Personalized Testing of Chemotherapy and Immunotherapy

    No full text
    Abstract Patient‐derived cancer organoids (PDOs) hold considerable promise for personalizing therapy selection and improving patient outcomes. However, it is challenging to generate PDOs in sufficient numbers to test therapies in standard culture platforms. This challenge is particularly acute for pancreatic ductal adenocarcinoma (PDAC) where most patients are diagnosed at an advanced stage with non‐resectable tumors and where patient tissue is in the form of needle biopsies. Here the development and characterization of microfluidic devices for testing therapies using a limited amount of tissue or PDOs available from PDAC biopsies is described. It is demonstrated that microfluidic PDOs are phenotypically and genotypically similar to the gold‐standard Matrigel organoids with the advantages of 1) spheroid uniformity, 2) minimal cell number requirement, and 3) not relying on Matrigel. The utility of microfluidic PDOs is proven by testing PDO responses to several chemotherapies, including an inhibitor of glycogen synthase kinase (GSKI). In addition, microfluidic organoid cultures are used to test effectiveness of immunotherapy comprised of NK cells in combination with a novel biologic. In summary, our microfluidic device offers considerable benefits for personalizing oncology based on cancer biopsies and may, in the future, be developed into a companion diagnostic for chemotherapy or immunotherapy treatments
    corecore