41 research outputs found

    Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits

    Get PDF
    Jatropha curcas (physic nut), a non‐edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up‐regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed

    Genome sequence of mungbean and insights into evolution within Vigna species

    Get PDF
    Mungbean (Vigna radiata) is a fast-growing, warm-season legume crop that is primarily cultivated in developing countries of Asia. Here we construct a draft genome sequence of mungbean to facilitate genome research into the subgenus Ceratotropis, which includes several important dietary legumes in Asia, and to enable a better understanding of the evolution of leguminous species. Based on the de novo assembly of additional wild mungbean species, the divergence of what was eventually domesticated and the sampled wild mungbean species appears to have predated domestication. Moreover, the de novo assembly of a tetraploid Vigna species (V. reflexo-pilosa var. glabra) provides genomic evidence of a recent allopolyploid event. The species tree is constructed using de novo RNA-seq assemblies of 22 accessions of 18 Vigna species and protein sets of Glycine max. The present assembly of V. radiata var. radiata will facilitate genome research and accelerate molecular breeding of the subgenus Ceratotropis

    Modeling Microstructure and Irradiation Effects

    Full text link

    Myoblast transplantation for heart failure – From bench to bedside

    No full text
    Heart failure causes morbidity and mortality. Cell transplantation using skeletal muscle myoblast is promising for myocardial repair as it can regenerate and repair the injury. Skeletal myoblasts are unipotent progenitor cells that can be expanded and genetically modified to deliver angiogenic cytokines and growth factors to encourage angiomyogenesis. Myoblast transplantation inhibits ventricular remodelling, decreases left ventricular diastolic dimension, increases myocardial wall thickness and minimizes global ventricular dilatation in animals. Ongoing trials with skeletal myoblast transplantation show improvement in perfusion and metabolic activity. Time constraints and the problem of generating autologous skeletal myoblasts for every patient can be overcome if allogeneic skeletal myoblasts from healthy young donors can be made available. Myoblast transplantation is confronted with the problem of donor cell survival post-transplantation. Its safety and feasibility have been documented during animal and phase I studies. The only serious postoperative adverse event related to the procedure was ventricular arrhythmias. The results of phase I studies are still preliminary. Endpoint measurements highlight improvement in quality of life, reduced nitroglycerine consumption, enhanced exercise tolerance, improvement in NYHA Class and wall motion by echocardiography, and significantly reduced perfusion defects. Future directions include concerted collaborative efforts, strict inclusion and exclusion criteria, better establishment of target population. Further work needs to be done on the ideal cell type, optimal number of cells and route of administration. The most suitable time for cell transplantation after ischemic injury and optimal mode of cell delivery are evaluated. The use of cell-based techniques to assist with cardiac regeneration holds promise for the treatment of heart failure

    Draft genome sequence of adzuki bean, Vigna angularis

    Get PDF
    Adzuki bean (Vigna angularis var. angularis) is a dietary legume crop in East Asia. The presumed progenitor (Vigna angularis var. nipponensis) is widely found in East Asia, suggesting speciation and domestication in these temperate climate regions. Here, we report a draft genome sequence of adzuki bean. The genome assembly covers 75% of the estimated genome and was mapped to 11 pseudo-chromosomes. Gene prediction revealed 26,857 high confidence protein-coding genes evidenced by RNAseq of different tissues. Comparative gene expression analysis with V. radiata showed that the tissue specificity of orthologous genes was highly conserved. Additional re-sequencing of wild adzuki bean, V. angularis var. nipponensis and V. nepalensis, was performed to analyze the variations between cultivated and wild adzuki bean. The determined divergence time of adzuki bean and the wild species predated archaeology-based domestication time. The present genome assembly will accelerate the genomics-assisted breeding of adzuki bean
    corecore