13 research outputs found

    Carbonyl reductase 1 amplifies glucocorticoid action in adipose tissue and impairs glucose tolerance in lean mice

    Get PDF
    Objective: Carbonyl reductase 1 (Cbr1), a recently discovered contributor to tissue glucocorticoid metabolism converting corticosterone to 2013dihydrocorticosterone (2013-DHB), is upregulated in adipose tissue of obese humans and mice and may contribute to cardiometabolic complications of obesity. This study tested the hypothesis that Cbr1-mediated glucocorticoid metabolism influences glucocorticoid and mineralocorticoid receptor activation in adipose tissue and impacts glucose homeostasis in lean and obese states. Methods: The actions of 2013-DHB on corticosteroid receptors in adipose tissue were investigated first using a combination of in silico, in vitro, and transcriptomic techniques and then in vivo administration in combination with receptor antagonists. Mice lacking one Cbr1 allele and mice overexpressing Cbr1 in their adipose tissue underwent metabolic phenotyping before and after induction of obesity with high-fat feeding. Results: 2013-DHB activated both the glucocorticoid and mineralocorticoid receptor in adipose tissue and systemic administration to wild-type mice induced glucose intolerance, an effect that was ameliorated by both glucocorticoid and mineralocorticoid receptor antagonism. Cbr1 haploinsufficient lean male mice had lower fasting glucose and improved glucose tolerance compared with littermate controls, a difference that was abolished by administration of 2013-DHB and absent in female mice with higher baseline adipose 2013-DHB concentrations than male mice. Conversely, overexpression of Cbr1 in adipose tissue resulted in worsened glucose tolerance and higher fasting glucose in lean male and female mice. However, neither Cbr1 haploinsfficiency nor adipose overexpression affected glucose dyshomeostasis induced by high-fat feeding. Conclusions: Carbonyl reductase 1 is a novel regulator of glucocorticoid and mineralocorticoid receptor activation in adipose tissue that influences glucose homeostasis in lean mice. (c) 2021 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Diabetes mellitus: pathophysiological changes and therap

    An overview of the safety pharmacology society strategic plan

    No full text
    Safety Pharmacology studies are conducted to characterize the confidence by which biologically active new chemical entities (NCE) may be anticipated as safe. Non-clinical safety pharmacology studies aim to detect and characterize potentially undesirable pharmacodynamic activities using an array of in silico, in vitro and in vivo animal models. While a broad spectrum of methodological innovation and advancement of the science occurs within the Safety Pharmacology Society, the society also focuses on partnerships with health authorities and technology providers and facilitates interaction with organizations of common interest such as pharmacology, physiology, neuroscience, cardiology and toxicology. Education remains a primary emphasis for the society through content derived from regional and annual meetings, webinars and publication of its works it seeks to inform the general scientific and regulatory community. In considering the future of safety pharmacology the society has developed a strategy to successfully navigate forward and not be mired in stagnation of the discipline. Strategy can be defined in numerous ways but generally involves establishing and setting goals, determining what actions are needed to achieve those goals, and mobilizing resources within the society to accomplish the actions. The discipline remains in rapid evolution and its coverage is certain to expand to provide better guidance for more systems in the next few years. This overview from the Safety Pharmacology Society will outline the strategic plan from 2016 to 2018 and beyond and provide insight into the future of the discipline which builds upon a previous strategic plan established in 2009

    Search for Sterile Neutrinos in MINOS and MINOS+ Using a Two-Detector Fit

    No full text
    A search for mixing between active neutrinos and light sterile neutrinos has been performed by looking for muon neutrino disappearance in two detectors at baselines of 1.04 and 735 km, using a combined MINOS and MINOS+ exposure of 16.36×1020 protons on target. A simultaneous fit to the charged-current muon neutrino and neutral-current neutrino energy spectra in the two detectors yields no evidence for sterile neutrino mixing using a 3+1 model. The most stringent limit to date is set on the mixing parameter sin2θ24 for most values of the sterile neutrino mass splitting Δm412>10-4 eV2. © 2019 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/" Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP 3

    Variations in management of A3 and A4 cervical spine fractures as designated by the AO Spine Subaxial Injury Classification System

    No full text
    OBJECTIVE Optimal management of A3 and A4 cervical spine fractures, as defined by the AO Spine Subaxial Injury Classification System, remains controversial. The objectives of this study were to determine whether significant management variations exist with respect to 1) fracture location across the upper, middle, and lower subaxial cervical spine and 2) geographic region, experience, or specialty. METHODS A survey was internationally distributed to 272 AO Spine members across six geographic regions (North America, South America, Europe, Africa, Asia, and the Middle East). Participants’ management of A3 and A4 subaxial cervical fractures across cervical regions was assessed in four clinical scenarios. Key characteristics considered in the vignettes included degree of neurological deficit, pain severity, cervical spine stability, presence of comorbidities, and fitness for surgery. Respondents were also directly asked about their preferences for operative management and misalignment acceptance across the subaxial cervical spine. RESULTS In total, 155 (57.0%) participants completed the survey. Pooled analysis demonstrated that surgeons were more likely to offer operative intervention for both A3 (p < 0.001) and A4 (p < 0.001) fractures located at the cervicothoracic junction compared with fractures at the upper or middle subaxial cervical regions. There were no significant variations in management for junctional incomplete (p = 0.116) or complete (p = 0.342) burst fractures between geographic regions. Surgeons with more than 10 years of experience were more likely to operatively manage A3 (p < 0.001) and A4 (p < 0.001) fractures than their younger counterparts. Neurosurgeons were more likely to offer surgical stabilization of A3 (p < 0.001) and A4 (p < 0.001) fractures than their orthopedic colleagues. Clinicians from both specialties agreed regarding their preference for fixation of lower junctional A3 (p = 0.866) and A4 (p = 0.368) fractures. Overall, surgical fixation was recommended more often for A4 than A3 fractures in all four scenarios (p < 0.001). CONCLUSIONS The subaxial cervical spine should not be considered a single unified entity. Both A3 and A4 fracture subtypes were more likely to be surgically managed at the cervicothoracic junction than the upper or middle subaxial cervical regions. The authors also determined that treatment strategies for A3 and A4 subaxial cervical spine fractures varied significantly, with the latter demonstrating a greater likelihood of operative management. These findings should be reflected in future subaxial cervical spine trauma algorithms. © 2022 The authors

    Long-term safety and efficacy of tezacaftor–ivacaftor in individuals with cystic fibrosis aged 12 years or older who are homozygous or heterozygous for Phe508del CFTR (EXTEND): an open-label extension study

    No full text
    Background Tezacaftor–ivacaftor is an approved cystic fibrosis transmembrane conductance regulator (CFTR) modulator shown to be efficacious and generally safe and well tolerated over 8–24 weeks in phase 3 clinical studies in participants aged 12 years or older with cystic fibrosis homozygous for the Phe508del CFTR mutation (F/F; study 661-106 [EVOLVE]) or heterozygous for the Phe508del CFTR mutation and a residual function mutation (F/RF; study 661-108 [EXPAND]). Longer-term (>24 weeks) safety and efficacy of tezacaftor–ivacaftor has not been assessed in clinical studies. Here, we present results of study 661-110 (EXTEND), a 96-week open-label extension study that assessed long-term safety, tolerability, and efficacy of tezacaftor–ivacaftor in participants aged 12 years or older with cystic fibrosis who were homozygous or heterozygous for the Phe508del CFTR mutation. Methods Study 661-110 was a 96-week, phase 3, multicentre, open-label study at 170 clinical research sites in Australia, Europe, Israel, and North America. Participants were aged 12 years or older, had cystic fibrosis, were homozygous or heterozygous for Phe508del CFTR, and completed one of six parent studies of tezacaftor–ivacaftor: studies 661-103, 661-106, 661-107, 661-108, 661-109, and 661-111. Participants received oral tezacaftor 100 mg once daily and oral ivacaftor 150 mg once every 12 h for up to 96 weeks. The primary endpoint was safety and tolerability. Secondary endpoints were changes in lung function, nutritional parameters, and respiratory symptom scores; pulmonary exacerbations; and pharmacokinetic parameters. A post-hoc analysis assessed the rate of lung function decline in F/F participants who received up to 120 weeks of tezacaftor–ivacaftor in studies 661-106 (F/F) and/or 661-110 compared with a matched cohort of CFTR modulator-untreated historical F/F controls from the Cystic Fibrosis Foundation Patient Registry. Primary safety analyses were done in all participants from all six parent studies who received at least one dose of study drug during this study. This study was registered at ClinicalTrials.gov (NCT02565914). Findings Between Aug 31, 2015, to May 31, 2019, 1044 participants were enrolled in study 661-110 from the six parent studies of whom 1042 participants received at least one dose of study drug and were included in the safety set. 995 (95%) participants had at least one TEAE; 22 (2%) had TEAEs leading to discontinuation; and 351 (34%) had serious TEAEs. No deaths occurred during the treatment-emergent period; after the treatment-emergent period, two deaths occurred, which were both deemed unrelated to study drug. F/F (106/110; n=459) and F/RF (108/110; n=226) participants beginning tezacaftor–ivacaftor in study 661-110 had improvements in efficacy endpoints consistent with parent studies; improvements in lung function and nutritional parameters and reductions in pulmonary exacerbations observed in the tezacaftor–ivacaftor groups in the parent studies were generally maintained in study 661-110 for an additional 96 weeks. Pharmacokinetic parameters were also similar to those in the parent studies. The annualised rate of lung function decline was 61·5% (95% CI 35·8 to 86·1) lower in tezacaftor–ivacaftor-treated F/F participants versus untreated matched historical controls. Interpretation Tezacaftor–ivacaftor was generally safe, well tolerated, and efficacious for up to 120 weeks, and the safety profile of tezacaftor–ivacaftor in study 661-110 was consistent with cystic fibrosis manifestations and with the safety profiles of the parent studies. The rate of lung function decline was significantly reduced in F/F participants, consistent with cystic fibrosis disease modification. Our results support the clinical benefit of long-term tezacaftor–ivacaftor treatment for people aged 12 years or older with cystic fibrosis with F/F or F/RF genotypes. Funding Vertex Pharmaceuticals Incorporated

    Parent-of-Origin Effects of the APOB Gene on Adiposity in Young Adults

    No full text

    Low-Energy Physics in Neutrino LArTPCs

    No full text
    International audienceIn this white paper, we outline some of the scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) detectors. Key takeaways are summarized as follows. 1) LArTPCs have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. 2) Low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. 3) BSM signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of BSM scenarios accessible in LArTPC-based searches. 4) Neutrino interaction cross sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood. Improved theory and experimental measurements are needed. Pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for experimentally improving this understanding. 5) There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. 6) Novel ideas for future LArTPC technology that enhance low-energy capabilities should be explored. These include novel charge enhancement and readout systems, enhanced photon detection, low radioactivity argon, and xenon doping. 7) Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways
    corecore