812 research outputs found
The freeze-out mechanism and phase-space density in ultrarelativistic heavy-ion collisions
We explore the consequences of a freeze-out criterion for heavy-ion
collisions, based on pion escape probabilities from the hot and dense but
rapidly expanding collision region. The influence of the expansion and the
scattering rate on the escape probability is studied. The temperature
dependence of this scattering rate favors a low freeze-out temperature of ~100
MeV. In general, our results support freeze-out along finite four-volumes
rather than sharp three-dimensional hypersurfaces, with high-pt particles
decoupling earlier from smaller volumes. We compare our approach to the
proposed universal freeze-out criteria using the pion phase-space density and
its mean free path.Comment: 8 pages, 2 figures, although conclusions are unchanged, the paper has
been re-written and the title has been changed for the sake of better
presentatio
Spin-Orbit Splitting in Non-Relativistic and Relativistic Self-Consistent Models
The splitting of single-particle energies between spin-orbit partners in
nuclei is examined in the framework of different self-consistent approachs,
non-relativistic as well as relativistic. Analytical expressions of spin-orbit
potentials are given for various cases. Proton spin-orbit splittings are
calculated along some isotopic chains (O, Ca, Sn) and they are compared with
existing data. It is found that the isotopic dependence of the relativistic
mean field predictions is similar to that of some Skyrme forces while the
relativistic Hartree-Fock approach leads to a very different dependence due to
the strong non-locality.Comment: 12 pages, RevTeX, 4 new figs.in .zip format, unchanged conclusions,
Phys. ReV.
Accretion, Outflows, and Winds of Magnetized Stars
Many types of stars have strong magnetic fields that can dynamically
influence the flow of circumstellar matter. In stars with accretion disks, the
stellar magnetic field can truncate the inner disk and determine the paths that
matter can take to flow onto the star. These paths are different in stars with
different magnetospheres and periods of rotation. External field lines of the
magnetosphere may inflate and produce favorable conditions for outflows from
the disk-magnetosphere boundary. Outflows can be particularly strong in the
propeller regime, wherein a star rotates more rapidly than the inner disk.
Outflows may also form at the disk-magnetosphere boundary of slowly rotating
stars, if the magnetosphere is compressed by the accreting matter. In isolated,
strongly magnetized stars, the magnetic field can influence formation and/or
propagation of stellar wind outflows. Winds from low-mass, solar-type stars may
be either thermally or magnetically driven, while winds from massive, luminous
O and B type stars are radiatively driven. In all of these cases, the magnetic
field influences matter flow from the stars and determines many observational
properties. In this chapter we review recent studies of accretion, outflows,
and winds of magnetized stars with a focus on three main topics: (1) accretion
onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and
(3) winds from isolated massive magnetized stars. We show results obtained from
global magnetohydrodynamic simulations and, in a number of cases compare global
simulations with observations.Comment: 60 pages, 44 figure
Statefinder Parameter for Varying G in Three Fluid System
In this work, we have considered variable G in flat FRW universe filled with
the mixture of dark energy, dark matter and radiation. If there is no
interaction between the three fluids, the deceleration parameter and
statefinder parameters have been calculated in terms of dimensionless density
parameters which can be fixed by observational data. Also the interaction
between three fluids has been analyzed due to constant . The statefinder
parameters also calculated in two cases: pressure is constant and pressure is
variable.Comment: 5 pages, Accepted for publication in "Astrophysics and Space Science
Relativistic versus Nonrelativistic Optical Potentials in A(e,e'p)B Reactions
We investigate the role of relativistic and nonrelativistic optical
potentials used in the analysis of () data. We find that the
relativistic calculations produce smaller () cross sections even in the
case in which both relativistic and nonrelativistic optical potentials fit
equally well the elastic proton--nucleus scattering data. Compared to the
nonrelativistic impulse approximation, this effect is due to a depletion in the
nuclear interior of the relativistic nucleon current, which should be taken
into account in the nonrelativistic treatment by a proper redefinition of the
effective current operator.Comment: Added one new figure, the formalism section has been enlarged and the
list of references updated. Added one appendix. This version will appear in
Phys. Rev. C. Revtex 3.0, 6 figures (not included). Full postscript version
of the file and figures available at
http://www.nikhefk.nikhef.nl/projects/Theory/preprints
Theoretical overview on high-energy emission in microquasars
Microquasar (MQ) jets are sites of particle acceleration and synchrotron
emission. Such synchrotron radiation has been detected coming from jet regions
of different spatial scales, which for the instruments at work nowadays appear
as compact radio cores, slightly resolved radio jets, or (very) extended
structures. Because of the presence of relativistic particles and dense photon,
magnetic and matter fields, these outflows are also the best candidates to
generate the very high-energy (VHE) gamma-rays detected coming from two of
these objects, LS 5039 and LS I +61 303, and may be contributing significantly
to the X-rays emitted from the MQ core. In addition, beside electromagnetic
radiation, jets at different scales are producing some amount of leptonic and
hadronic cosmic rays (CR), and evidences of neutrino production in these
objects may be eventually found. In this work, we review on the different
physical processes that may be at work in or related to MQ jets. The jet
regions capable to produce significant amounts of emission at different
wavelengths have been reduced to the jet base, the jet at scales of the order
of the size of the system orbital semi-major axis, the jet middle scales (the
resolved radio jets), and the jet termination point. The surroundings of the
jet could be sites of multiwavelegnth emission as well, deserving also an
insight. We focus on those scenarios, either hadronic or leptonic, in which it
seems more plausible to generate both photons from radio to VHE and high-energy
neutrinos. We briefly comment as well on the relevance of MQ as possible
contributors to the galactic CR in the GeV-PeV range.Comment: Astrophysics & Space Science, in press (invited talk in the
conference: The multimessenger approach to the high-energy gamma-ray
sources", Barcelona/Catalonia, in July 4-7); 10 pages, 6 figures, 2 tables
(one reference corrected
The Two-Nucleon Potential from Chiral Lagrangians
Chiral symmetry is consistently implemented in the two-nucleon problem at
low-energy through the general effective chiral lagrangian. The potential is
obtained up to a certain order in chiral perturbation theory both in momentum
and coordinate space. Results of a fit to scattering phase shifts and bound
state data are presented, where satisfactory agreement is found for laboratory
energies up to about 100 Mev.Comment: Postscript file; figures available by reques
Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context
Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated o¡enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ‘compositional’ and ‘contextual’ explanations of cross-national di¡erences
have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the e¡ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this
paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) di¡erences. Furthermore, crossnational variation in victimization rates is not only shaped by di¡erences in national context, but
also by varying composition. More speci¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
Measurement of open charm production in +Au collisions at =200 GeV
We present the first comprehensive measurement of and
their charge conjugate states at mid-rapidity in +Au collisions at
=200 GeV using the STAR TPC. The directly measured open charm
multiplicity distribution covers a broad transverse momentum region of
0 GeV/. The measured at mid-rapidity for is
and the measured
and ratios are approximately equal with a magnitude of . The total cross section per
nucleon-nucleon collision extracted from this study is mb. The direct measurement of open charm production is
consistent with STAR single electron data. This cross section is higher than
expectations from PYTHIA and other pQCD calculations. The measured
distribution is harder than the pQCD prediction using the Peterson
fragmentation function.Comment: Quark Matter 2004 Proceeding
- …
