812 research outputs found

    The freeze-out mechanism and phase-space density in ultrarelativistic heavy-ion collisions

    Get PDF
    We explore the consequences of a freeze-out criterion for heavy-ion collisions, based on pion escape probabilities from the hot and dense but rapidly expanding collision region. The influence of the expansion and the scattering rate on the escape probability is studied. The temperature dependence of this scattering rate favors a low freeze-out temperature of ~100 MeV. In general, our results support freeze-out along finite four-volumes rather than sharp three-dimensional hypersurfaces, with high-pt particles decoupling earlier from smaller volumes. We compare our approach to the proposed universal freeze-out criteria using the pion phase-space density and its mean free path.Comment: 8 pages, 2 figures, although conclusions are unchanged, the paper has been re-written and the title has been changed for the sake of better presentatio

    Spin-Orbit Splitting in Non-Relativistic and Relativistic Self-Consistent Models

    Get PDF
    The splitting of single-particle energies between spin-orbit partners in nuclei is examined in the framework of different self-consistent approachs, non-relativistic as well as relativistic. Analytical expressions of spin-orbit potentials are given for various cases. Proton spin-orbit splittings are calculated along some isotopic chains (O, Ca, Sn) and they are compared with existing data. It is found that the isotopic dependence of the relativistic mean field predictions is similar to that of some Skyrme forces while the relativistic Hartree-Fock approach leads to a very different dependence due to the strong non-locality.Comment: 12 pages, RevTeX, 4 new figs.in .zip format, unchanged conclusions, Phys. ReV.

    Accretion, Outflows, and Winds of Magnetized Stars

    Full text link
    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars are radiatively driven. In all of these cases, the magnetic field influences matter flow from the stars and determines many observational properties. In this chapter we review recent studies of accretion, outflows, and winds of magnetized stars with a focus on three main topics: (1) accretion onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and (3) winds from isolated massive magnetized stars. We show results obtained from global magnetohydrodynamic simulations and, in a number of cases compare global simulations with observations.Comment: 60 pages, 44 figure

    Statefinder Parameter for Varying G in Three Fluid System

    Full text link
    In this work, we have considered variable G in flat FRW universe filled with the mixture of dark energy, dark matter and radiation. If there is no interaction between the three fluids, the deceleration parameter and statefinder parameters have been calculated in terms of dimensionless density parameters which can be fixed by observational data. Also the interaction between three fluids has been analyzed due to constant GG. The statefinder parameters also calculated in two cases: pressure is constant and pressure is variable.Comment: 5 pages, Accepted for publication in "Astrophysics and Space Science

    Relativistic versus Nonrelativistic Optical Potentials in A(e,e'p)B Reactions

    Full text link
    We investigate the role of relativistic and nonrelativistic optical potentials used in the analysis of (e,epe,e'p) data. We find that the relativistic calculations produce smaller (e,epe,e'p) cross sections even in the case in which both relativistic and nonrelativistic optical potentials fit equally well the elastic proton--nucleus scattering data. Compared to the nonrelativistic impulse approximation, this effect is due to a depletion in the nuclear interior of the relativistic nucleon current, which should be taken into account in the nonrelativistic treatment by a proper redefinition of the effective current operator.Comment: Added one new figure, the formalism section has been enlarged and the list of references updated. Added one appendix. This version will appear in Phys. Rev. C. Revtex 3.0, 6 figures (not included). Full postscript version of the file and figures available at http://www.nikhefk.nikhef.nl/projects/Theory/preprints

    Theoretical overview on high-energy emission in microquasars

    Get PDF
    Microquasar (MQ) jets are sites of particle acceleration and synchrotron emission. Such synchrotron radiation has been detected coming from jet regions of different spatial scales, which for the instruments at work nowadays appear as compact radio cores, slightly resolved radio jets, or (very) extended structures. Because of the presence of relativistic particles and dense photon, magnetic and matter fields, these outflows are also the best candidates to generate the very high-energy (VHE) gamma-rays detected coming from two of these objects, LS 5039 and LS I +61 303, and may be contributing significantly to the X-rays emitted from the MQ core. In addition, beside electromagnetic radiation, jets at different scales are producing some amount of leptonic and hadronic cosmic rays (CR), and evidences of neutrino production in these objects may be eventually found. In this work, we review on the different physical processes that may be at work in or related to MQ jets. The jet regions capable to produce significant amounts of emission at different wavelengths have been reduced to the jet base, the jet at scales of the order of the size of the system orbital semi-major axis, the jet middle scales (the resolved radio jets), and the jet termination point. The surroundings of the jet could be sites of multiwavelegnth emission as well, deserving also an insight. We focus on those scenarios, either hadronic or leptonic, in which it seems more plausible to generate both photons from radio to VHE and high-energy neutrinos. We briefly comment as well on the relevance of MQ as possible contributors to the galactic CR in the GeV-PeV range.Comment: Astrophysics & Space Science, in press (invited talk in the conference: The multimessenger approach to the high-energy gamma-ray sources", Barcelona/Catalonia, in July 4-7); 10 pages, 6 figures, 2 tables (one reference corrected

    The Two-Nucleon Potential from Chiral Lagrangians

    Get PDF
    Chiral symmetry is consistently implemented in the two-nucleon problem at low-energy through the general effective chiral lagrangian. The potential is obtained up to a certain order in chiral perturbation theory both in momentum and coordinate space. Results of a fit to scattering phase shifts and bound state data are presented, where satisfactory agreement is found for laboratory energies up to about 100 Mev.Comment: Postscript file; figures available by reques

    Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context

    Get PDF
    Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated o¡enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ‘compositional’ and ‘contextual’ explanations of cross-national di¡erences have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the e¡ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) di¡erences. Furthermore, crossnational variation in victimization rates is not only shaped by di¡erences in national context, but also by varying composition. More speci¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.

    Partonic flow and ϕ\phi-meson production in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the ϕ\phi-meson elliptic flow (v2(pT)v_{2}(p_{T})) and high statistics pTp_{T} distributions for different centralities from sNN\sqrt{s_{NN}} = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2v_{2} of the ϕ\phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Ω\Omega to those of the ϕ\phi as a function of transverse momentum is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher momenta. The nuclear modification factor (RCPR_{CP}) of ϕ\phi follows the trend observed in the KS0K^{0}_{S} mesons rather than in Λ\Lambda baryons, supporting baryon-meson scaling. Since ϕ\phi-mesons are made via coalescence of seemingly thermalized ss quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR

    Measurement of open charm production in dd+Au collisions at sNN\sqrt{s_{NN}}=200 GeV

    Full text link
    We present the first comprehensive measurement of D0,D+,D+D^{0}, D^{+}, D^{*+} and their charge conjugate states at mid-rapidity in dd+Au collisions at sNN\sqrt{s_{_{NN}}}=200 GeV using the STAR TPC. The directly measured open charm multiplicity distribution covers a broad transverse momentum region of 0<pT<11<p_{T}<11 GeV/cc. The measured dN/dydN/dy at mid-rapidity for D0D^{0} is 0.0265±0.0036(stat.)±0.0071(syst.)0.0265\pm 0.0036 (stat.) \pm 0.0071 (syst.) and the measured D+/D0D^{*+}/D^{0} and D+/D0D^{+}/D^{0} ratios are approximately equal with a magnitude of 0.40±0.09(stat.)±0.13(syst.)0.40\pm 0.09(stat.) \pm 0.13(syst.). The total ccˉc\bar{c} cross section per nucleon-nucleon collision extracted from this study is 1.18±0.21(stat.)±0.39(syst.)1.18 \pm 0.21(stat.) \pm 0.39(syst.) mb. The direct measurement of open charm production is consistent with STAR single electron data. This cross section is higher than expectations from PYTHIA and other pQCD calculations. The measured pTp_{T} distribution is harder than the pQCD prediction using the Peterson fragmentation function.Comment: Quark Matter 2004 Proceeding
    corecore