145 research outputs found

    CP Phases in Correlated Production and Decay of Neutralinos in the Minimal Supersymmetric Standard Model

    Get PDF
    We investigate the associated production of neutralinos e+eχ~10χ~20e^+e^-\to\tilde{\chi}^0_1\tilde{\chi}^0_2 accompanied by the neutralino leptonic decay χ~20χ~10+\tilde{\chi}^0_2\to\tilde{\chi}^0_1 \ell^+\ell^-, taking into account initial beam polarization and production-decay spin correlations in the minimal supersymmetric standard model with general CP phases but without generational mixing in the slepton sector. The stringent constraints from the electron EDM on the CP phases are also included in the discussion. Initial beam polarizations lead to three CP--even distributions and one CP--odd distribution, which can be studied independently of the details of the neutralino decays. We find that the production cross section and the branching fractions of the leptonic neutralino decays are very sensitive to the CP phases. In addition, the production--decay spin correlations lead to several CP--even observables such as lepton invariant mass distribution, and lepton angular distribution, and one interesting T--odd (CP--odd) triple product of the initial electron momentum and two final lepton momenta, the size of which might be large enough to be measured at the high--luminosity future electron--positron collider or can play a complementary role in constraining the CP phases with the EDM constraints.Comment: Revtex, 37 pages, 12 eps figure

    Tau-Sleptons and Tau-Sneutrino in the MSSM with Complex Parameters

    Full text link
    We present a phenomenological study of tau-sleptons stau_1,2 and tau-sneutrino in the Minimal Supersymmetric Standard Model with complex parameters A_tau, mu and M_1. We analyse production and decays of stau_1,2 and tau-sneutrino at a future e^+ e^- collider. We present numerical predictions for the important decay rates, paying particular attention to their dependence on the complex parameters. The branching ratios of the fermionic decays of stau_1 and tau-sneutrino show a significant phase dependence for tan(beta) < 10. For tan(beta) > 10 the branching ratios for the stau_2 decays into Higgs bosons depend very sensitively on the phases. We show how information on the phase phi(A_tau) and the other fundamental stau parameters can be obtained from measurements of the stau masses, polarized cross sections and bosonic and fermionic decay branching ratios, for small and large tan(beta) values. We estimate the expected errors for these parameters. Given favorable conditions, the error of A_tau is about 10% to 20%, while the errors of the remaining stau parameters are in the range of approximately 1% to 3%. We also show that the induced electric dipole moment of the tau-lepton is well below the current experimental limit.Comment: LaTex, 25 pages, 11 figures (included); v2: extended discussion on error determination, version to appear in Phys.Rev.

    The Clinical Translation Gap in Child Health Exercise Research: A Call for Disruptive Innovation

    Get PDF
    In children, levels of play, physical activity, and fitness are key indicators of health and disease and closely tied to optimal growth and development. Cardiopulmonary exercise testing (CPET) provides clinicians with biomarkers of disease and effectiveness of therapy, and researchers with novel insights into fundamental biological mechanisms reflecting an integrated physiological response that is hidden when the child is at rest. Yet the growth of clinical trials utilizing CPET in pediatrics remains stunted despite the current emphasis on preventative medicine and the growing recognition that therapies used in children should be clinically tested in children. There exists a translational gap between basic discovery and clinical application in this essential component of child health. To address this gap, the NIH provided funding through the Clinical and Translational Science Award (CTSA) program to convene a panel of experts. This report summarizes our major findings and outlines next steps necessary to enhance child health exercise medicine translational research. We present specific plans to bolster data interoperability, improve child health CPET reference values, stimulate formal training in exercise medicine for child health care professionals, and outline innovative approaches through which exercise medicine can become more accessible and advance therapeutics across the child health spectrum

    O(αs)O(\alpha_s) corrections to the polar angle dependence of the longitudinal spin-spin correlation asymmetry in e+eqqˉe^+e^-\to q\bar q

    Full text link
    We provide analytical results for the O(αs)O(\alpha_s) corrections to the polar angle dependence of the longitudinal spin-spin correlation asymmetry in e+eqqˉe^+e^-\to q\bar q. For top quark pair production the O(αs)O(\alpha_s) corrections to the longitudinal spin-spin asymmetry are strongly polar angle dependent and can amount up to 4%4\% in the q2q^2-range from above ttˉt\bar t threshold up to q2=1000\sqrt{q^2}=1000 GeV. The O(αs)O(\alpha_s) radiative corrections to the correlation asymmetry are below 1%1\% in the forward direction where the cross section is largest. In the e+ebbˉe^+e^-\to b\bar b case the O(αs)O(\alpha_s) corrections reduce the asymmetry value from its mb=0m_b=0 value of 100%-100\% to approximately 96%-96\% for q2q^2-values around the ZZ peak and are practically independent of the value of the polar angle theta. This reduction can be traced to finite anomalous contributions from residual mass effects which survive the mb0m_b\to 0 limit. We discuss the role of the anomalous contributions and the pattern of how they contribute to spin-flip and non-flip terms.Comment: 32 pages written in LaTeX, including 8 encapsulated postscript figures and 2 tables; v2: corrections according to the erratu

    Top Squarks and Bottom Squarks in the MSSM with Complex Parameters

    Full text link
    We present a phenomenological study of top squarks (~t_1,2) and bottom squarks (~b_1,2) in the Minimal Supersymmetric Standard Model (MSSM) with complex parameters A_t, A_b, \mu and M_1. In particular we focus on the CP phase dependence of the branching ratios of (~t_1,2) and (~b_1,2) decays. We give the formulae of the two-body decay widths and present numerical results. We find that the effect of the phases on the (~t_1,2) and (~b_1,2) decays can be quite significant in a large region of the MSSM parameter space. This could have important implications for (~t_1,2) and (~b_1,2) searches and the MSSM parameter determination in future collider experiments. We have also estimated the accuracy expected in the determination of the parameters of ~t_i and ~b_i by a global fit of the measured masses, decay branching ratios and production cross sections at e^+ e^- linear colliders with polarized beams. Analysing two scenarios, we find that the fundamental parameters apart from A_t and A_b can be determined with errors of 1% to 2%, assuming an integrated luminosity of 1 ab^-1 and a sufficiently large c.m.s. energy to produce also the heavier ~t_2 and ~b_2 states. The parameter A_t can be determined with an error of 2 - 3%, whereas the error on A_b is likely to be of the order of 50%.Comment: 31 pages, 8 figures, comments and references added, conclusions unchanged; version to appear in Phys. Rev.

    Measurement of spin correlation in ttbar production using dilepton final states

    Get PDF
    We measure the correlation between the spin of the top quark and the spin of the anti-top quark in (ttbar -> W+ W- b bbar -> l+ nu b l- nubar bbar) final states produced in ppbar collisions at a center of mass energy sqrt(s)=1.96 TeV, where l is an electron or muon. The data correspond to an integrated luminosity of 5.4 fb-1 and were collected with the D0 detector at the Fermilab Tevatron collider. The correlation is extracted from the angles of the two leptons in the t and tbar rest frames, yielding a correlation strength C= 0.10^{+0.45}_{-0.45}, in agreement with the NLO QCD prediction within two standard deviations, but also in agreement with the no correlation hypothesis.Comment: 10 pages, 3 figures, submitted to PL

    Optical Light Curves of Supernovae

    Full text link
    Photometry is the most easily acquired information about supernovae. The light curves constructed from regular imaging provide signatures not only for the energy input, the radiation escape, the local environment and the progenitor stars, but also for the intervening dust. They are the main tool for the use of supernovae as distance indicators through the determination of the luminosity. The light curve of SN 1987A still is the richest and longest observed example for a core-collapse supernova. Despite the peculiar nature of this object, as explosion of a blue supergiant, it displayed all the characteristics of Type II supernovae. The light curves of Type Ib/c supernovae are more homogeneous, but still display the signatures of explosions in massive stars, among them early interaction with their circumstellar material. Wrinkles in the near-uniform appearance of thermonuclear (Type Ia) supernovae have emerged during the past decade. Subtle differences have been observed especially at near-infrared wavelengths. Interestingly, the light curve shapes appear to correlate with a variety of other characteristics of these supernovae. The construction of bolometric light curves provides the most direct link to theoretical predictions and can yield sorely needed constraints for the models. First steps in this direction have been already made.Comment: To be published in:"Supernovae and Gamma Ray Bursters", Lecture Notes in Physics (http://link.springer.de/series/lnpp
    corecore