34 research outputs found
The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter
The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described
The psychological science accelerator’s COVID-19 rapid-response dataset
In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data
Bortezomib before and after autologous stem cell transplantation overcomes the negative prognostic impact of renal impairment in newly diagnosed multiple myeloma: a subgroup analysis from the HOVON-65/GMMG-HD4 trial
Contains fulltext :
137125.pdf (publisher's version ) (Open Access)Renal impairment is frequent in patients with multiple myeloma and is correlated with an inferior prognosis. This analysis evaluates the prognostic role of renal impairment in patients with myeloma treated with bortezomib before and after autologous stem cell transplantation within a prospective randomized phase III trial. Eight hundred and twenty-seven newly diagnosed myeloma patients in the HOVON-65/GMMG-HD4 trial were randomized to receive three cycles of vincristine, adriamycin, dexamethasone (VAD) or bortezomib, adriamycin, dexamethasone (PAD) followed by autologous stem cell transplantation and maintenance with thalidomide 50 mg daily (VAD-arm) or bortezomib 1.3 mg/m(2) every 2 weeks (PAD-arm). Baseline serum creatinine was less than 2 mg/dL (Durie-Salmon-stage A) in 746 patients and 2 mg/dL or higher (stage B) in 81. In myeloma patients with a baseline creatinine >/= 2 mg/dL the renal response rate was 63% in the VAD-arm and 81% in the PAD-arm (P=0.31). The overall myeloma response rate was 64% in the VAD-arm versus 89% in the PAD-arm with 13% complete responses in the VAD-arm versus 36% in the PAD-arm (P=0.01). Overall survival at 3 years for patients with a baseline creatinine >/= 2 mg/dL was 34% in the VAD-arm versus 74% in the PAD-arm (P/= 2 mg/dL or <2 mg/dL. We conclude that a bortezomib-containing treatment before and after autologous stem cell transplantation overcomes the negative prognostic impact of renal impairment in patients with newly diagnosed multiple myeloma. The trial was registered at www.trialregister.nl as NTR213 and at www.controlled-trials.com as ISRCTN 64455289
Transitional accommodation for refugees
International audienceIt is generally accepted that drought is one of the most costly weather-related natural hazards. In 2015, a long-lasting drought hit Europe, particularly affecting central and eastern Europe. In some regions it was the driest (North Slovakia) and in others (Czech Republic and Poland) it was the second driest summer of the last 50 years (following 2003). Key questions are: (i) how extreme are these events, not only in terms of hydro-meteorological characteristics but also impacts? and (ii) how are these impacts managed
The protection and management of the Sargasso Sea: The golden floating rainforest of the Atlantic Ocean: Summary Science and Supporting Evidence Case
The Sargasso Sea is a fundamentally important part of the world’s ocean, located within the North Atlantic sub-tropical gyre with its boundaries defined by the surrounding currents. It is the only sea without land boundaries with water depths ranging from the surface coral reefs of Bermuda to abyssal plains at 4500 m. The Sargasso Sea’s importance derives from the interdependent mix of its physical structure and properties, its ecosystems, its role in global scale ocean and earth system processes, its socio-economic and cultural values, and its role in global scientific research. Despite this, the Sargasso Sea is threatened by a range of human activities that either directly adversely impact it or have the potential to do so. Being open ocean, the Sargasso Sea is part of the High Seas, the area of ocean that covers nearly 50% of the earth’s surface but which is beyond the jurisdiction and responsibility of any national government, and as such it enjoys little protection. To promote the importance of the Sargasso Sea, the Sargasso Sea Alliance was created under the leadership of the Government of Bermuda in 2010. This report provides a summary of the scientific and other supporting evidence for the importance of the Sargasso Sea and is intended to develop international recognition of this; to start the process of establishing appropriate management and precautionary regimes within existing agreements; and to stimulate a wider debate on appropriate management and protection for the High Seas.
Nine reasons why the Sargasso Sea is important are described and discussed. It is a place of legend with a rich history of great importance to Bermuda; it has an iconic ecosystem based upon floating Sargassum, the world’s only holopelagic seaweed, hosting a rich and diverse community including ten endemic species; it provides essential habitat for nurturing a wide diversity of species many of which are endangered or threatened; it is the only breeding location for the threatened European and American eels; it lies within a large ocean gyre which concentrates pollutants and which has a variety of oceanographic processes that impact its productivity and species diversity; it plays a disproportionately large role in global ocean processes of carbon sequestration; it is of major importance for global scientific research and monitoring and is home to the world’s longest ocean time series of measurements; it has significant values to local and world-wide economies; and it is threatened by activities including over-fishing, pollution, shipping, and Sargassum harvesting.
Apart from over-fishing many of the threats are potential, with few direct causal relationships between specific activities and adverse impacts. But there is accumulative evidence that the Sargasso Sea is being adversely impacted by human activities, and with the possibility of new uses for Sargassum in the future, the lack of direct scientific evidence does not preclude international action through the established precautionary approach. The opportunity to recognise the importance of the Sargasso Sea and to develop and implement procedures to protect this iconic region and the wider High Seas should be taken before it is too late