203 research outputs found

    A robust model for rapidly varying flows over movable bottom with suspended and bedload transport: modelling and numerical approach

    Get PDF
    We propose a coupled model for suspended and bedload sediment transport in the shallow water framework. The model is deduced under hydrostatic pressure assumptions and will not assume any Bossinesq hypothesis. The numerical resolution is carried out in a segregated way. First the underlying system of conservation laws is solved by using a first order path-conservative Riemann solver. Then, the source terms corresponding with the erosion and depositions rates are approximated in a semi-implicit way. The final scheme preserves the positivity of the density. Several numerical experiments were carried out in order to validate the model and the numerical scheme. The results obtained are in good agreement with the experimental data

    Selective activation of memristive interfaces in TaOx-based devices by controlling oxygen vacancies dynamics at the nanoscale

    Get PDF
    The development of novel devices for neuromorphic computing and non-traditional logic operations largely relies on the fabrication of well controlled memristive systems with functionalities beyond standard bipolar behavior and digital ON-OFF states. In the present work we demonstrate for Ta2O5-based devices that it is possible to selectively activate/deactivate two series memristive interfaces in order to obtain clockwise or counter-clockwise multilevel squared remanent resistance loops, just by controlling both the electroforming process and the (a)symmetry of the applied stimuli, and independently of the nature of the used metallic electrodes. Based on our thorough characterization, analysis and modeling, we show that the physical origin of this electrical behavior relies on controlled oxygen vacancies electromigration between three different nanoscopic zones of the active Ta2O5-x layer: a central one and two quasi-symmetric interfaces with reduced TaO2-h(y) layers. Our devices fabrication process is rather simple as it implies the room temperature deposition of only one CMOS compatible oxide - Ta-oxide - and one metal, suggesting that it might be possible to take advantage of these properties at low cost and with easy scability. The tunable opposite remanent resistance loops circulations with multiple - analogic - intermediate stable states allows mimicking the adaptable synaptic weight of biological systems and presents potential for non-standard logic devices.Fil: Ferreyra, Cristian Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; ArgentinaFil: Sánchez, M.J.. Comisión Nacional de Energía Atómica; ArgentinaFil: Aguirre, Myriam. Universidad de Zaragoza; EspañaFil: Acha, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Bengió, Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Lecourt, J.. Centre National de la Recherche Scientifique; FranciaFil: Lüders, U.. Centre National de la Recherche Scientifique; FranciaFil: Rubi, Diego. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentin

    Small molecules organic photovoltaic devices based on the planar heterojunction porphyrin derivates/fullerene

    Get PDF
    In this paper, we studied of photoelectric properties of multilayer organic photovoltaic cells (OPV cells). The active organic layers consisted of a planar heterojunction between a layer of meso-tetrakis(5-bromo-2-thienyl)porphyrin), (TBrTP) as electron donor (ED) and a layer fullerene molecules. The TBrTP allows achieving OPVCs exhibiting promising efficiencies when the ABL is the MoO3/CuI DABL

    Large memcapacitance and memristance at Nb:SrTiO3/La0.5Sr0.5Mn0.5Co0.5O3-d topotactic redox interface

    Get PDF
    The possibility to develop neuromorphic computing devices able to mimic the extraordinary data processing capabilities of biological systems spurs the research on memristive systems. Memristors with additional functionalities such as robust memcapacitance can outperform standard devices in key aspects such as power consumption or miniaturization possibilities. In this work, we demonstrate a large memcapacitive response of a perovskite memristive interface, using the topotactic redox ability of La0.5Sr0.5Mn0.5Co0.5O3-d (LSMCO, 0 = d = 0.62). We demonstrate that the multi-mem behavior originates at the switchable n-p diode formed at the Nb:SrTiO3/LSMCO interface. We found for our Nb:SrTiO3/LSMCO/Pt devices a memcapacitive effect CHIGH/CLOW ~100 at 150 kHz. The proof-of-concept interface reported here opens a promising venue to use topotactic redox materials for disruptive nanoelectronics, with straightforward applications in neuromorphic computing technology

    A perspective on the landscape problem

    Full text link
    I discuss the historical roots of the landscape problem and propose criteria for its successful resolution. This provides a perspective to evaluate the possibility to solve it in several of the speculative cosmological scenarios under study including eternal inflation, cosmological natural selection and cyclic cosmologies.Comment: Invited contribution for a special issue of Foundations of Physics titled: Forty Years Of String Theory: Reflecting On the Foundations. 31 pages, no figure

    Stellar Inversion Techniques

    Full text link
    Stellar seismic inversions have proved to be a powerful technique for probing the internal structure of stars, and paving the way for a better understanding of the underlying physics by revealing some of the shortcomings in current stellar models. In this lecture, we provide an introduction to this topic by explaining kernel-based inversion techniques. Specifically, we explain how various kernels are obtained from the pulsation equations, and describe inversion techniques such as the Regularised Least-Squares (RLS) and Optimally Localised Averages (OLA) methods.Comment: 20 pages, 8 figures. Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Is the evidence for dark energy secure?

    Full text link
    Several kinds of astronomical observations, interpreted in the framework of the standard Friedmann-Robertson-Walker cosmology, have indicated that our universe is dominated by a Cosmological Constant. The dimming of distant Type Ia supernovae suggests that the expansion rate is accelerating, as if driven by vacuum energy, and this has been indirectly substantiated through studies of angular anisotropies in the cosmic microwave background (CMB) and of spatial correlations in the large-scale structure (LSS) of galaxies. However there is no compelling direct evidence yet for (the dynamical effects of) dark energy. The precision CMB data can be equally well fitted without dark energy if the spectrum of primordial density fluctuations is not quite scale-free and if the Hubble constant is lower globally than its locally measured value. The LSS data can also be satisfactorily fitted if there is a small component of hot dark matter, as would be provided by neutrinos of mass 0.5 eV. Although such an Einstein-de Sitter model cannot explain the SNe Ia Hubble diagram or the position of the `baryon acoustic oscillation' peak in the autocorrelation function of galaxies, it may be possible to do so e.g. in an inhomogeneous Lemaitre-Tolman-Bondi cosmology where we are located in a void which is expanding faster than the average. Such alternatives may seem contrived but this must be weighed against our lack of any fundamental understanding of the inferred tiny energy scale of the dark energy. It may well be an artifact of an oversimplified cosmological model, rather than having physical reality.Comment: 12 pages, 5 figures; to appear in a special issue of General Relativity and Gravitation, eds. G.F.R. Ellis et al; Changes: references reformatted in journal style - text unchange

    On the Inverse Scattering Method for Integrable PDEs on a Star Graph

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. We present a framework to solve the open problem of formulating the inverse scattering method (ISM) for an integrable PDE on a star-graph. The idea is to map the problem on the graph to a matrix initial-boundary value (IBV) problem and then to extend the unified method of Fokas to such a matrix IBV problem. The nonlinear Schrödinger equation is chosen to illustrate the method. The framework unifies all previously known examples which are recovered as particular cases. The case of general Robin conditions at the vertex is discussed: the notion of linearizable initial-boundary conditions is introduced. For such conditions, the method is shown to be as efficient as the ISM on the full-line

    Antibody response in patients admitted to the hospital with suspected SARS-CoV-2 infection: results from a multicenter study across Spain

    Get PDF
    Aim: To evaluate the serological response against SARS-CoV-2 in a multicenter study representative of the Spanish COVID pandemic. Methods: IgG and IgM + IgA responses were measured on 1466 samples from 1236 Spanish COVID-19 patients admitted to the hospital, two commercial ELISA kits (Vircell SL, Spain) based on the detection of antibodies against the viral spike protein and nucleoprotein, were used. Results: Approximately half of the patients presented antibodies (56.8% were IgM + IgA positive and 43.0% were IgG positive) as soon as 2 days after the first positive PCR result. Serological test positivity increased with time from the PCR test, and 10 days after the first PCR result, 91.5% and 88.0% of the patients presented IgM + IgA and IgG antibodies, respectively. Conclusion: The high values of sensitivity attained in the present study from a relatively early period of time after hospitalization support the use of the evaluated serological assays as supplementary diagnostic tests for the clinical management of COVID-19
    corecore