52 research outputs found

    Trapping of Projectiles in Fixed Scatterer Calculations

    Full text link
    We study multiple scattering off nuclei in the closure approximation. Instead of reducing the dynamics to one particle potential scattering, the scattering amplitude for fixed target configurations is averaged over the target groundstate density via stochastic integration. At low energies a strong coupling limit is found which can not be obtained in a first order optical potential approximation. As its physical explanation, we propose it to be caused by trapping of the projectile. We analyse this phenomenon in mean field and random potential approximations. (PACS: 24.10.-i)Comment: 15 page

    Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems

    Get PDF
    A novel parallel kinetic Monte Carlo (kMC) algorithm formulated on the basis of perfect time synchronicity is presented. The algorithm is intended as a generalization of the standard n-fold kMC method, and is trivially implemented in parallel architectures. In its present form, the algorithm is not rigorous in the sense that boundary conflicts are ignored. We demonstrate, however, that, in their absence, or if they were correctly accounted for, our algorithm solves the same master equation as the serial method. We test the validity and parallel performance of the method by solving several pure diffusion problems (i.e. with no particle interactions) with known analytical solution. We also study diffusion-reaction systems with known asymptotic behavior and find that, for large systems with interaction radii smaller than the typical diffusion length, boundary conflicts are negligible and do not affect the global kinetic evolution, which is seen to agree with the expected analytical behavior. Our method is a controlled approximation in the sense that the error incurred by ignoring boundary conflicts can be quantified intrinsically, during the course of a simulation, and decreased arbitrarily (controlled) by modifying a few problem-dependent simulation parameters

    OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser.

    Get PDF
    We propose a simple Brillouin-Raman multichannel fiber laser with supportive Rayleigh scattering in a linear cavity without employing any feedback mirrors at the end of cavity. Brillouin and the consequences of Rayleigh scattering work as virtual mirrors. We employ a section of large effective area fiber in addition to a section of dispersion compensating fiber to enhance the optical signal-to-noise ratio of multi-channel Brillouin-Raman comb fiber laser. We able to produce a flat comb fiber laser with 37 nm bandwidth from 1539 to 1576 nm built-in 460 Stokes lines with 0.08 nm spacing. Furthermore, this Brillouin-Raman comb fiber laser has acceptable optical signal-to-noise ratio value of 16.8 dB for the entire bandwidth with excellent flatness and low discrepancies in power levels of about 2.3 dB between odd and even channels

    Transfer-Matrix Monte Carlo Estimates of Critical Points in the Simple Cubic Ising, Planar and Heisenberg Models

    Full text link
    The principle and the efficiency of the Monte Carlo transfer-matrix algorithm are discussed. Enhancements of this algorithm are illustrated by applications to several phase transitions in lattice spin models. We demonstrate how the statistical noise can be reduced considerably by a similarity transformation of the transfer matrix using a variational estimate of its leading eigenvector, in analogy with a common practice in various quantum Monte Carlo techniques. Here we take the two-dimensional coupled XYXY-Ising model as an example. Furthermore, we calculate interface free energies of finite three-dimensional O(nn) models, for the three cases n=1n=1, 2 and 3. Application of finite-size scaling to the numerical results yields estimates of the critical points of these three models. The statistical precision of the estimates is satisfactory for the modest amount of computer time spent

    Short time evolved wave functions for solving quantum many-body problems

    Get PDF
    The exact ground state of a strongly interacting quantum many-body system can be obtained by evolving a trial state with finite overlap with the ground state to infinite imaginary time. In this work, we use a newly discovered fourth order positive factorization scheme which requires knowing both the potential and its gradients. We show that the resultaing fourth order wave function alone, without further iterations, gives an excellent description of strongly interacting quantum systems such as liquid 4He, comparable to the best variational results in the literature.Comment: 5 pages, 3 figures, 1 tabl

    Natural Orbitals and BEC in traps, a diffusion Monte Carlo analysis

    Full text link
    We investigate the properties of hard core Bosons in harmonic traps over a wide range of densities. Bose-Einstein condensation is formulated using the one-body Density Matrix (OBDM) which is equally valid at low and high densities. The OBDM is calculated using diffusion Monte Carlo methods and it is diagonalized to obtain the "natural" single particle orbitals and their occupation, including the condensate fraction. At low Boson density, na3<105na^3 < 10^{-5}, where n=N/Vn = N/V and aa is the hard core diameter, the condensate is localized at the center of the trap. As na3na^3 increases, the condensate moves to the edges of the trap. At high density it is localized at the edges of the trap. At na3104na^3 \leq 10^{-4} the Gross-Pitaevskii theory of the condensate describes the whole system within 1%. At na3103na^3 \approx 10^{-3} corrections are 3% to the GP energy but 30% to the Bogoliubov prediction of the condensate depletion. At na3102na^3 \gtrsim 10^{-2}, mean field theory fails. At na30.1na^3 \gtrsim 0.1, the Bosons behave more like a liquid 4^4He droplet than a trapped Boson gas.Comment: 13 pages, 14 figures, submitted Phys. Rev.

    Path Integral Monte Carlo Approach to the U(1) Lattice Gauge Theory in (2+1) Dimensions

    Get PDF
    Path Integral Monte Carlo simulations have been performed for U(1) lattice gauge theory in (2+1) dimensions on anisotropic lattices. We extractthe static quark potential, the string tension and the low-lying "glueball" spectrum.The Euclidean string tension and mass gap decrease exponentially at weakcoupling in excellent agreement with the predictions of Polyakov and G{\" o}pfert and Mack, but their magnitudes are five times bigger than predicted. Extrapolations are made to the extreme anisotropic or Hamiltonian limit, and comparisons are made with previous estimates obtained in the Hamiltonian formulation.Comment: 12 pages, 16 figure

    Ultrafast carrier relaxation and vertical-transport phenomena in semiconductor superlattices: A Monte Carlo analysis

    Get PDF
    The ultrafast dynamics of photoexcited carriers in semiconductor superlattices is studied theoretically on the basis of a Monte Carlo solution of the coupled Boltzmann transport equations for electrons and holes. The approach allows a kinetic description of the relevant interaction mechanisms such as intra- miniband and interminiband carrier-phonon scattering processes. The energy relaxation of photoexcited carriers, as well as their vertical transport, is investigated in detail. The effects of the multiminiband nature of the superlattice spectrum on the energy relaxation process are discussed with particular emphasis on the presence of Bloch oscillations induced by an external electric field. The analysis is performed for different superlattice structures and excitation conditions. It shows the dominant role of carrier-polar-optical-phonon interaction in determining the nature of the carrier dynamics in the low-density limit. In particular, the miniband width, compared to the phonon energy, turns out to be a relevant quantity in predicting the existence of Bloch oscillations
    corecore