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Short-time-evolved wave functions for solving quantum many-body problems
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The exact ground state of a strongly interacting quantum many-body system can be obtained by evolving a
trial state with finite overlap with the ground state to infinite imaginary time. In many cases, since the
convergence is exponential, the system converges essentially to the exact ground state in a relatively short time.
Thus a short-time evolved wave function can be an excellent approximation to the exact ground state. Such a
short-time-evolved wave function can be obtained by factorizing, or splitting, the evolution operator to high
order. However, for the imaginary time Schro¨dinger equation, which contains an irreversible diffusion kernel,
all coefficients, or time steps, must be positive.~Negative time steps would require evolving the diffusion
process backward in time, which is impossible.! Heretofore, only second-order factorization schemes can have
all positive coefficients, but without further iterations, these cannot be used to evolve the system long enough
to be close to the exact ground state. In this work, we use a newly discovered fourth-order positive factoriza-
tion scheme which requires knowing both the potential and its gradient. We show that the resulting fourth-order
wave function alone, without further iterations, gives an excellent description of strongly interacting quantum
systems such as liquid4He, comparable to the best variational results in the literature. This suggests that such
a fourth-order wave function can be used to study the ground state of diverse quantum many-body systems,
including Bose-Einstein condensates and Fermi systems.
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We consider a quantum system ofN particles with massm
described by the Hamiltonian

H5T1V, T52l(
i 51

N

¹ i
2 , V5(

i . j

N

v~r i j !, ~1!

whereT is the kinetic-energy operator,V is a sum of pairwise
potentialsv(r i j ), andl5\2/(2m).

In imaginary timet5 i t /\ the many-body time-dependen
Schrödinger equation can be written as

2
]

]t
uC~t!&5HuC~t!&, ~2!

with formal solution

uC~t!&5e2tHuF&, uF&[uC~0!&. ~3!

In coordinate representation C(R,t)5^RuC(t)&
5^Rue2tHuF&, whereR5$r1•••rN% denotes the set of al
particle coordinates. If the initial wave functionuF& is ex-
panded in the set of exact eigenfunctions$Fn% of the Hamil-
tonianH, then Eq.~3! has the more explicit form

C~R,t!5e2tE0Fc0F01 (
nÞ0

1`

cne2t(En2E0)FnG . ~4!

Assuming the nondegeneracy of the ground state (En2E0
.0;nÞ0), the above wave function becomes proportio
to the exact ground-state wave function in the limit of in
nite imaginary time. A basic strategy is then to start with
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good trial wave function and evolve it in imaginary tim
long enough to damp out all but the exact ground-state w
function.

Since the imaginary time evolution cannot be done
actly, one usually develops a short-time propagator by
composinge2tH5e2t(T1V) into exactly solvable parts, an
further iterates this short-time propagator to longer tim
This is essentially the approach of the diffusion Monte Ca
~DMC! method.1–3 The need for iterations introduces th
complication of branching, which is the hallmark of diffu
sion and Green’s-function Monte Carlo methods.4 Our idea is
to develop a short-time propagator via higher-order deco
position that can be applied for a sufficiently long time
project out an excellent approximation to the ground st
without iteration.

First- and second-order factorization schemes such as

e2t(T1V)'H e2tTe2tV1O~t2!

e2(1/2)tVe2tTe2(1/2)tV1O~t3!
~5!

are well known, but without iterations, they cannot be a
plied at a sufficiently large value oft to get near to the
ground state. It is also well known that in the context
symplectic integrators, the short-time-evolution operator c
be factorized to arbitrarily high-order in the form5–12

e2t(T1V)5)
i

e2aitTe2bitV, ~6!

with coefficients$ai ,bi% determined by the required order o
accuracy. However, as first proved by Sheng13 and later by
Suzuki14 ~using a more geometric argument!, beyond second
©2003 The American Physical Society10-1
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order, any factorization of form~6! mustcontain some nega
tive coefficients in the set$ai ,bi%. Goldman and Kaper15

later proved that any factorization of form~6! must contain
at least one negative coefficient forboth operators. This
means that for decompositions of form~6!, one must evolve
the system backward in time for some intermediate ti
steps. This is of little consequence for classical dynamics
real-time quantum dynamics, both of which are time reve
ible. For the imaginary time Schro¨dinger equation, whose
kinetic-energy operator is the time-irreversible diffusion k
nel, this is detrimental. This is becausee2aitT

}e2(r82r )2/(2ait) is the diffusion Green’s function. For pos
tive ai , this kernel can be simulated by Gaussian rand
walks. If ai were negative, the kernel would be unbound a
unnormalizable, with no probabilistic based~Monte Carlo!
simulations possible. This is just a mathematical restatem
of the physical fact that diffusion is an irreversible proce
Positive decomposition coefficients are therefore absolu
essential for solving any evolution equation having an ir
versible component, such as the imaginary time Schro¨dinger
equation.

Since both classical and quantum dynamics are time
versible, there is a lack of impetus to search for higher-or
factorization schemes with only positive coefficients. Wh
higher-order factorizations of form~6!, with negative coeffi-
cients, have been studied extensively in the literature,10–12 it
was only recently that Suzuki16 and Chin17 found some
fourth-order~but no higher-order! forward time step decom
position schemes. In order to bypass Sheng and Suzu
proof, one must introduce a higher-order commuta
@V,@T,V## in addition to operatorsT andV used in Eq.~6!.
In this work, we use the fourth-order factorizatio
scheme16,17 referred to as schemeA:

e2t(T1V)5e2(1/6)tVe2(1/2)tTe2(2/3)tṼe2(1/2)tTe2(1/6)tV

1O~t5!, ~7!

with Ṽ given by

Ṽ5V1
t2

48
@V,@T,V##5V1

t2

48
2l(

i 51

N

u¹iVu2. ~8!

This scheme was also found by Koseloff,18 but his coeffi-
cient for the double commutator term isincorrectby a factor
of 3 too large. For a more detailed discussion of posit
factorization schemes and forward symplector integrat
see Ref. 19.

To go from state vectors to coordinate wave functions,
insert complete sets of coordinate states, 15*dSiS&^Su,
where S5$s1•••sN% and write, for example, the operato
equation~3! in the form

C~R,t!5E dSG~R,S,t!F~S!, ~9!

where Green’s functionG(R,S,t) is given by

G~R,S,t!5^Rue2tHuS&. ~10!
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The intermediate coordinatesSare also sometime referred t
as ‘‘shadow’’ positions. Each decomposition scheme th
corresponds to a specific wave function for the ground st
For instance, the first-order scheme gives the linear w
function

C~R,t!5E dSe2C(R2S)2
e2tV(S)F~S!, ~11!

where (R2S)2[( i 51
N (r i2si)

2, and where we have used th
fundamental result that the kinetic evolution operator is j
the diffusion Green’s function,

^Rue2tTuS&}e2C(R2S)2
, C5

1

4tl
. ~12!

Similarly, the second-order scheme gives the following q
dratic wave function:

C~R,t!5e2(t/2)V(R)E dSe2C(R2S)2
e2(t/2)V(S)F~S!.

~13!

Finally, the fourth-order schemeA produces the following
quartic many-body wave function:

C~R,t!5e2(t/6)V(R)E dS8e2C8(R2S8)2
e2(2t/3)Ṽ(S8)

3E dSe2C8(S82S)2
e2(t/6)V(S)F~S!, ~14!

now with C851/(2tl).
In all these wave functions, there is only a single para

eter, the imaginary timet, that we can vary. All else are
fixed by the factorization scheme. If the factorization sche
can accurately reproduce the imaginary time evolution of
wave function, the resulting energy must fall monotonica
from the initial energy toward the exact ground-state ene
with increasingt. To the extent that these wave functions a
not the exact imaginary time wave function, the energy w
eventually rise again. Thus for each wave function there
optimal t where it will be ‘‘closest’’ to the exact ground
state.

To test the quality of the above wave functions we u
them to describe the ground state of a strongly correla
quantum system ofN 4He atoms interacting via a two-bod
Aziz HFDHE2 potential.20 At equilibrium, the system is in a
liquid state and has a density ofrs350.365(s52.556 Å).
The simplest description of the ground state is McMillan
Jastrow wave function

F~R!5expF2(
i . j

N

u~r i j !G , u~r !5
1

2 S b

r D 5

, ~15!

with b51.2s. We will use this wave function as our initia
wave function in all our simulations.

For all three wave functions, the expectation value of
Hamiltonian can be computed from
0-2
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E5

E dRC ~R,t!HC~R,t!

E dRuC~R,t!u2
. ~16!

The iterated wave functions simply require more integrat
variables. For example, in the case of the linear and quad
wave function, the above can be expressed as

E5E dRdSLdSRp~R,SL ,SR!EL~R,SL ,SR!, ~17!

where p(R,SL ,SR) is the probability density function
EL(R,SL ,SR) is the local energy, andSL,R are the respective
left (L), right ~R! auxiliary, or shadow, variables. For th
quartic wave function, the corresponding expressions for
probability density function and energy expectation value
similar, but with the addition of two more auxiliary shado
variablesSL,R8 .

We use the Metropolis Monte Carlo algorithm21 to sample
the probability density from a 9N- and 15N-dimensional
configuration space, corresponding to two and four sets
shadow coordinates in the case of linear/quadratic and q
tic wave functions, respectively. In these computations,
Metropolis steps are subdivided in two parts. First, one
tempts to move real particle coordinates at random ins
cubical boxes of side lengthD. Second, analogous attemp
are made to move shadow coordinates inside cubical bo
of side lengthDsh . For instance, in the case of the quadra
wave function, we first attempted to move all theR coordi-
nates, then the shadow coordinates$SL% and $SR%. The pa-
rametersD and Dsh were adjusted so that the acceptan
ratio for both particle and shadow moves was nearly 50%

In addition to the ground-state variational energy, we ha
also computed the radial distribution functiong(r ), and its
Fourier transform, the structure factorS(k). These quantities
are spherical averages and have been computed for bot
real particles and the shadow coordinates. The radial di
bution function is defined by

g~r !5
1

Nr (
iÞ j

N

^d~ ur i2r j2r u!&, ~18!

where the angular brackets denote an average with respe
uC(R,t)u2 andr is the particle density. The structure fact
S(k) is obtained from the average (1/N)^r2krk&, whererk
5( j 51

N exp(2ik•r j ), a procedure which is only possible on
discrete set ofk values allowed by the periodic bounda
conditions.

All simulations presented in this work have been do
with N5108 atoms of4He in a cubic box with periodic
boundary conditions. To enforce periodicity all correlatio
smoothly go to zero at a cutoff distance,r c5L/2, equal to
half the side of the simulation box according to the repla
ment

f ~r !→ f ~r !1 f ~2r c2r !22 f ~r c!. ~19!
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In Fig. 1 we show the equilibrium energy per particle f
liquid 4He for various short-time-evolved wave functions
function of the imaginary time parametert. Other results
from literature are also indicated for comparison: M1MS is
the energy obtained by a shadow wave function havin
pure repulsive McMillan ~M! pseudopotential22 of fifth
power-law form for both particles and shadows.23 M1AS is
the energy obtained by a shadow wave function with an
tractive shadow-shadow pseudopotential of scaled A
HFDHE2 potential~AS! form.24 M1T is the McMillan wave
function with triplet ~T! correlations.25 OJ1AS refers to a
shadow wave function with an optimized Jastrow partic
particle pseudopotential~OJ! and scaled Aziz HFDHE2
shadow-shadow pseudopotential~AS!.24 GFMC is the
Green’s-Function Monte Carlo calculations with Mcmilla
form for importance and starting function.4 The experimental
value is taken from Roachet al.26

As expected, each of our factorized wave functio
reaches an energy minimum with increasing value oft. The
flatness and depth of the energy minimum improve marke
with the order of the wave function. The linear wave fun
tion has a shallow and narrow minimum att50.002 and
only improves upon McMillan’s result (t50) by '0.3 K.
The minimum of the quadratic wave function is much bet
at t50.006 with a value of26.393 K. The quartic wave-
function’s energy minimum extends further out tot50.015
attaining26.809 K, which is lower than all existing varia
tional Monte Carlo~VMC! calculations that we are aware o
To demonstrate the necessity of the gradient term, we h
also plotted results obtained from Eq.~7! without the gradi-
ent term in the potential. In the present case, gradient ter
responsible for'50% of the improvement from that of th
quadratic wave function.

To give a quantitative comparison, we summarize vario
ground-state equilibrium energies for4He in Table I.

In Fig. 2 we show the equilibrium pair distribution func

FIG. 1. The ground-state energy per particle in kelvin for4He at
the experimental equilibrium density (rs350.365) using the Aziz
HFDHE2 potential as a function of the parametert. Monte Carlo
results from using various short-time-evolved wave functions are
indicated. All simulations have been done forN5108 particles. M
indicates a McMillan wave-function energy. M1MS, M1AS, M
1T, OJ1AS refers to various variational Monte Carlo~VMC! re-
sults in the literature, see text for details.
0-3
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tion g(r ) for 4He as obtained from the quartic wave fun
tion. This g(r ) is compared with the respectiveg(r ) ob-
tained from the M1AS shadow wave function and th
experimental one of Svenssonet al.27 obtained by neutron
diffraction at saturated vapor pressure atT51.0 K. It is
known24 that the M1AS curve differs from the experimenta
one because it predicts a diminished nearest-neighbor m
mum and the entire curve is shifted by about 0.1 Å to lar
values ofr compared to the experimental results. The p
distribution function that we obtained is in excellent agre
ment with the experimental one.

In Fig. 3 we showS(k) at equilibrium densityrs3

TABLE I. Energies of liquid 4He at the experimental equilib
rium density (rs350.365;s52.556 Å) and at zero temperatur
VMC indicates a variational Monte Carlo calculation with the ind
cated wave function. All simulations use the Aziz HFDHE2 pote
tial and have been performed for systems ofN5108 particles. The
M1MS results are taken from Vitielloet al. ~Ref. 23!. The M
1AS and OJ-AS results are taken from MacFarlandet al. ~Ref. 24!,
The GFMC results are taken from Kaloset al. ~Ref. 4!. The experi-
mental data are taken from Roachet al. ~Ref. 26!. The energies are
given in kelvin per particle.

Method Trial function Energy~K!

VMC M1MS 26.06160.025
VMC M1AS 26.59960.034
VMC OJ1AS 26.78960.023
VMC Linear 26.14460.092
VMC Quadratic 26.39360.021
VMC No Grad 26.64460.026
VMC Quartic 26.80960.017
GFMC 27.12060.024
Experiment 27.140

FIG. 2. The pair distribution function for liquid4He at the equi-
librium density rs350.365 after a VMC simulations withN
5108 particles. The filled circles show theg(r ) of this work that is
compared with the respectiveg(r ) obtained from the M1AS wave
function ~dotted line! and the experimentalg(r ) as reported by
Svenssonet al. ~Ref. 27! ~solid line! obtained at saturated vapo
pressure at a temperatureT51.0 K.
13451
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50.365 as obtained from the quartic wave function. The
perimentalS(k) shown in this figure is the result reported b
Svenssonet al.27 The overall agreement between our sho
time-evolved structure factor with experiment is excelle
except at smallk. This is not unexpected because our ima
nary time is still rather short for the wave function to devel
the necessary long-range correlation to produce the lin
behavior28 of S(k) observed in bulk4He.

In this work, based on recent findings on forward tim
steps decomposition schemes, we have implemente
fourth-order short-time-evolved wave function for describi
the ground state of strongly interacting quantum syste
Our approach is systematic, free of arbitrary parameters,
can be applied to any general quantum many-body probl
In the case of liquid4He, we have produced ground-sta
energy and structure results better than any existing V
calculations, but without the use of complicated branch
processes as in DMC or GFMC. Since the antisymme
requirement on fermion wave functions can be more ea
implemented on the variational level, our quartic wave fun
tions may be of great utility in studying Fermi systems.

Our second-order wave function is similar in structure
the class of shadow wave functions,29 except that our wave
function follows directly from the second-order factorizatio
scheme without any particular adjustment of pseudopoten
or scale functions. Our use of a positive factorization sche
to produce a much improved fourth-order wave functi
demonstrates that there is a systematic way of improving
class of wave functions by introducing more shadow coor
nates. Currently, there is no known sixth-order forward fa
torization schemes, and hence no sixth-order short-tim
evolved wave function is possible.

This work was supported, in part, by the National Scien
Foundation, Grant Nos. PHY-0100839 and DMS-0310580
one of the authors~S.A.C.!.

-

FIG. 3. Static structure factorS(k) of liquid 4He at equilibrium
density rs350.365. The filled circles show our results forS(k)
obtained from the formulaS(k)5(1/N)^r2krk&. The solid line de-
notes the experimental results reported by Svensson and co-wo
~Ref. 27! obtained at saturated vapor pressure by means of neu
diffraction at temperatureT51.0 K.
0-4
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