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Abstract 

A novel parallel kinetic Monte Carlo (kMC) algorithm formulated on the basis of perfect time synchronicity is pre­
sented. The algorithm is intended as a generalization of the standard w-fold kMC method, and is trivially implemented 
in parallel architectures. In its present form, the algorithm is not rigorous in the sense that boundary conflicts are ignored. 
We demonstrate, however, that, in their absence, or if they were correctly accounted for, our algorithm solves the same 
master equation as the serial method. We test the validity and parallel performance of the method by solving several pure 
diffusion problems (i.e. with no particle interactions) with known analytical solution. We also study diffusion-reaction sys­
tems with known asymptotic behavior and find that, for large systems with interaction radii smaller than the typical dif­
fusion length, boundary conflicts are negligible and do not affect the global kinetic evolution, which is seen to agree with 
the expected analytical behavior. Our method is a controlled approximation in the sense that the error incurred by ignoring 
boundary conflicts can be quantified intrinsically, during the course of a simulation, and decreased arbitrarily (controlled) 
by modifying a few problem-dependent simulation parameters. 
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1. Introduction 

Kinetic Monte Carlo (kMC) has proven an extremely powerful method to simulate the time evolution of 
Markovian processes kMC relies on the a priori knowledge of a given set of transition rates character­
izing the simulated processes, which are assumed to obey Poisson statistics. The scope of applications for kMC 
is extraordinarily wide, ranging from epidemiology and population kinetics to surface growth or radiation 
damage. Because of its versatility, ease of implementation, and wide range of applications, kMC has been 



the object of a significant parallelization effort in order to take advantage of existing and upcoming tera- and 
peta-scale computing capabilities. However, the difficulty of parallelizing kinetic Monte Carlo lies in the 
intrinsic time discreticity underlying event-driven simulations, which are sequential in character, and do not 
lend themselves to trivial parallel implementations. The ultimate validity test for any parallel kMC (pkMC) 
algorithm is that it solve the same master equation as the sequential (serial) method rigorously. This does 
not necessarily imply that both approaches give the same sequence of events, but that, on average, both give 
the same kinetic evolution resulting in the same statistical distributions as a function of time. 

Early attempts to use parallel algorithms achieved some speedup but failed to satisfy these requirements 
One family of methods that do ensure this compatibility between sequential and parallel processes is 

based on asynchronous kinetics, with different processors simulating events independently and then accepting 
or rejecting them on the basis of domain correlation schemes that may severely limit the computational effi­
ciency Most of the recent work in this area has been inspired by Lubachevsky's original paper [6], 
which provides an exact parallel algorithm for discrete-event simulations. This class of algorithms attempts 
to advance a 'virtual time horizon' (VTH) asynchronously by a combination of kMC steps whose progression 
is controlled by relatively cumbersome acceptance/rejection techniques. The progress rate of the simulation 
depends on the density of local minima of the instantaneous VTH, which in turn depends on the relative 
occurrence of event roll-backs across domain boundaries. Depending on the problem at hand, VTHs can dis­
play a strongly fluctuating behavior, for which ingenious roughness-suppressing algorithms have been pro­
posed Another interesting alternative for parallel event-driven simulations is Jefferson's time warp 
algorithm The time warp paradigm provides a protocol for minimizing the number of conservative syn­
chronization updates by ignoring causality errors, which are later detected and retraced for their resolution. 
Whichever the method chosen, owing to their intrinsic implementation complexity and limited parallel effi­
ciency, little use has been made of these methods in terms of physical applications. 

An obvious way to avoid roll-backs due to time evolution mismatches is to advance time synchronously. 
However, in this case, boundary errors due to conflicts among neighboring processors may still occur. There 
have been several parallel algorithms involving the so-called synchronous relaxation scheme that treat these 
conflicts rigorously However, although these algorithms effectively advance a flat VTH front (hence 
the term 'synchronous'), they still rely on an alternative form of roll-backs whereby an iterative scheme is used 
to ensure consistency among the sequences of events generated in each processor. This may result in poor 
efficiency and a large communications overhead that is seen to grow logarithmically with the number of pro­
cessors These limitations can be partially mitigated by using more approximate methods, such as the 
synchronous sublattice algorithm recently proposed by Shim and Amar in the context of thin film growth sim­
ulations Although this method is only semi-rigorous, it has proven very promising due to its straightfor­
ward scheme for solving boundary errors and the absence of global communications. Nevertheless, despite 
the recent progress in parallel discrete-event simulations, both synchronous and asynchronous, the develop­
ment and application of rigorous efficient parallel algorithms for kMC simulations remains a significant 
challenge. 

In this article we propose a synchronous, parallel generalization of the rejection-free «-fold kMC method of 
Bortz (hereafter referred to as BKL for brevity). Our algorithm ensures a flat VTH construction, 
thereby rendering all communications between domains essentially trivial and facilitating its implementation. 
While our algorithm is not exact in its present form, we show that, for many practical applications, errors are 
essentially negligible. Next, we describe the algorithm in detail, discuss its correctness and the treatment of 
boundary conflicts, and we study its potential intrinsic performance. Then, in Section 3, we validate the 
method and study its scalability by solving several well-understood diffusion problems. 

2. Parallel kMC algorithm 

In BKL, a system with TV walkers, each with rate r, (i = 1. . .N), is evolved in time by randomly selecting 
an event with probability r,/Ktot, where Rtot = J2t rt is what we hereafter term the frequency line, i.e. the 
aggregate of all the individual r,. The system is then advanced in time by randomly sampling from an expo­
nential distribution exp(— RtotStBKh) [16]. We build upon the BKL framework to formulate our parallel 
algorithm. 



2.1. General algorithm 

The algorithm is based on the introduction of 'null' events to achieve perfect synchronicity. The idea was 
originally proposed by Hanusse and Blanche to study large diffusion-reaction systems with their improved 
minimal process method The concept has been elaborated further by other authors although 
always in the context of serial calculations. Here, we use null events to solve diffusion-reaction master equa­
tions in parallel. In our algorithm the computational cell is divided into K arbitrary subdomains Qk (where, for 
consistency with the parallel computing literature, K is the number oi processing units, PE's). A parallel kMC 
step consists of the following: 

(1) A frequency line is constructed for each Qk as the aggregate of the individual rates, rik, of all the walkers 
located within each subdomain k: 

where nk and Rk are, respectively, the number of walkers and the total rate in subdomain k, Rtot = J2f^t, 
and TV = Ylnk-

(2) The maximum rate, RmiLX is defined as: 

^max = max {Rk} 

k=l,...JC 

(3) We assign a null event with rate rM to each frequency line in each subdomain k such that: 

f~k0 = Rmax — Rk 

where, in general, the rk0 will all be different. From this, it follows that: 

3 Qa, oce{k}, \Ra=Rmlix^>ra0 = 0, 
i.e., there is at least one domain where there are no null events. 

(4) In each Qk an event is carried out with probability pik = rik/RmiLX, including null events chosen with 
Pko = rico/Rm&x- For this step, we must ensure that independent sequences of random numbers are pro­
duced for each K, using an appropriate parallel random number generator. 

(5) Communicate interdomain processes and boundary events. If a walker leaves its subdomain of origin 
during a diffusive event, it is transferred to the corresponding Qk. In continuum systems with unbounded 
jump length (see Sections 3.1 and 3.2) this requires a global communication, as all processors need to be 
ready to receive any diffusing particle from any given Qk. In systems with finite range, e.g. lattice-based 
diffusion, local rules may suffice to transfer information from one domain to the next, such as neighbor 
lists or 'ghost' regions For systems with interacting particles, boundary conflicts are sub­
sequently checked for and the corresponding actions to resolve them, if any, taken (cf. Section 2.3).: 

(6) As in standard BKL, a simple time increment is sampled from an exponential distribution: 

ln<* 
St p R„ 

where £ e (0,1) is a suitable random number. By virtue of Poisson statistics, 8tv becomes the global time 
step for all of the parallel processes. 
In Appendix A we prove that, if boundary conflicts (Section 2.3) are treated correctly, this algorithm 
solves the same master equation as the serial case. 



2.2. Parallel efficiency 

The length conservation of the frequency lines in all Qk guarantees exact synchronicity. This is a key aspect 
of our algorithm: time is advanced exactly the same amount in all processors, which enables direct commu­
nication across domain boundaries trivially, eliminating the need for sophisticated rejection minimization 
schemes across boundaries commonly found in other parallel methods However, note that, because 
in principle the spatial decomposition may be arbitrary (i.e. it does not affect the global kinetics), optimal effi­
ciency is not guaranteed per se. Evidently, an optimum decomposition will be that which renders {J2trto} m m " 
imum, but the solution is not unique and the catalog of options is quite varied. For example, in his proposed 
improvement of the original minimal process method, ben-Avraham chose a cell-coarsening scheme that pre­
serves the half-life of the particle concentration Our method of choice is to perform a domain decompo­
sition using the method of orthogonal recursive bisection (ORB) so as to equally subdivide the aggregate 
of all the rates in each subdomain after each recursive partition. In the ideal limit of numbers of walkers that 
are an exact multiple of K, with equal rates, such decomposition yields optimum gain by producing {rk0 = 0, 
\/k}. The deviation from this optimum behavior can be measured by the utilization ratio (UR), defined as the 
fraction of 'real' - rather than 'null' - events in the entire system: 

J V J Vmax k 

The intrinsic time step gain of the method is governed by this utilization ratio. A domain decomposition (or 
any other distributed decomposition) that prescribes {rM = 0, V k} will yield ideal gain (UR = 100%). Under 
these conditions, Rmiix = Rtot/K and, hence, on average, 8tv = Kdt^KL- UR = 100% is the theoretical efficiency 
limit and acts as an upper bound to the time step gain. Of course, generally, for discrete systems with varying 
rates r„ UR < 100%, _Kmax ^ Rtot/K, and 8tv < KStBKh. The general relation between 8tv and K, which repre­
sents the true time step gain with respect to an equivalent serial BKL simulation, is therefore: 

8tv = K • UR • ^BKL (2) 

As interdomain migration occurs, the {rM} must be recomputed to continue ensuring synchronicity. How­
ever, the communication of Rmiix to all processors is needed only if, after a given pkMC step, the sum X),rfc m 

any subdomain is greater than the current RmiLX. Thus, the sixth step of our algorithm can be expressed as 
follows: 

(7) i f (E , r « > ^max), communicate 7fmax globally 

However, even when this condition is not satisfied, the UR may drop if if max is not updated regularly (e.g. if 
the rk0 are preponderant in the frequency line), leading to inefficient simulations. Depending on the problem at 
hand, an optimum balance between updating and communicating 7fmax can be achieved to ensure maximum effi­
ciency. Communicating RmRX only when condition (7) is satisfied presents some technical difficulties when it 
comes to the practical implementation of the algorithm. Indeed, we have not been able to eliminate the use 
of global calls to check (7), which limits the total efficiency of our method (see Appendix B). Nevertheless, this 
pertains to the technical aspects of the implementation, which we separate from the formulation of the method. 

Steps (l)-(7) above provide a synchronous, parallel algorithm in closed form. So far, no numerical argu­
ments have been made as regards the computational efficiency of the method. However, in the event that 
the time evolution of the density profile results in a spatial redistribution of particles that deviates from the 
original optimum decomposition, the utilization ratio may drop below what may be considered an acceptable 
parallel performance. The metrics chosen to establish reasonable tolerance limits on UR are typically prob­
lem-dependent (e.g. diffusion coefficients, cell sizes, etc.). In general, when this occurs, the domain decompo­
sition must be updated, either by performing some type of dynamic load balancing, or by generating a new 
decomposition (such as a global ORB). Irrespective of the method chosen, this process can be integrated 
between steps (7) and (1) of our kMC algorithm: 



if (UR < TOL), then update domain decomposition (perform ORB) 

where TOL is a problem-dependent tolerance. It is worth stressing that this is an optional modification that 
does not detract from the generality of our algorithm, since correct kinetics (see the following section) arise 
independent of the domain partition scheme chosen. Refreshing the domain decomposition is aimed simply 
at optimizing the intrinsic efficiency, although, as we shall discuss below, it can also help in mitigating the 
effect of boundary conflicts. 

2.3. Analysis of boundary conflicts 

Owing to the intrinsic asynchronicity of discrete-event kinetics, boundary errors due to subdomain interac­
tions are bound to occur in parallel kMC simulations of any kind. Consider for example the Ising system, 
where the flip probability of each particle depends on its local spin distribution. In this case, no two neighbor­
ing particles can flip their spins at the same time, as this would result in a causality error that could lead to the 
wrong kinetic evolution. Another potential source of conflicts in parallel is the violation of the lattice 'exclu­
sion' principle. A case in point is solute diffusion via a vacancy mechanism, where only one solute atom can 
jump into a vacant site at a given instant. These processes are trivially modeled using a serial kMC method 
such as BKL, for such conflicts never arise. Methods to treat them have also been devised within the frame­
work of asynchronous parallel algorithms, as seen in Section I, e.g. roll-back schemes. Described in this fash­
ion, these conflicts are mostly pertinent to discrete system kinetics, where particles can only occupy specified 
sites - or small deviations thereof - such as in lattice kMC or other lattice-based methods. In continuum 
media, the definition of conflict is somewhat blurrier, as no two particles ever occupy the same location. In 
this case, we may consider that a conflict has occurred whenever two particles move concurrently within dc 

of one another, where dc is a suitable interaction distance. In this sense, it is worth remarking that one of 
the most salient advantages of our method with respect to parallel asynchronous algorithms is that conflicts 
only arise when co-occurring particles interact. In other words, the reaction between a particle jumping across 
a domain boundary and an inactive one in the neighboring subdomain is trivial using our algorithm. Not so 
for asynchronous methods, where such instances must be considered carefully to avoid causality errors. 

Here we restrict ourselves to the study of diffusion-reaction systems in continuum media, and we leave the 
treatment of conflicts in discrete systems for future studies. In any case, the solution of these conflicts deter­
mines the 'correctness' of the method, i.e. whether a parallel method can rigorously simulate the kinetics of a 
given problem as obtained with a serial simulation.2 In our case, the event histories generated in each Qk are 
independent of each other as long as events in one subdomain do not affect events in others. When this occurs, 
interactions, e.g. as when two particles A and B moving concurrently during the same pkMC iteration within a 
distance dc of each other,3 may give rise to boundary conflicts. Fig. 1 shows schematically such an instance, 
with A and B following random trajectories to their final positions A' and B' within the same time step. For­
mally, a conflict occurs whenever the probability of interaction between two particles in parallel, PV(I), ran­
domly selected in different domains, differs from the equivalent serial probability, PS(I). 

This equivalency condition is simply that the number of kMC events required in either case to arrive at the 
same final configuration be the same. For example, if a conflict involves m particles from as many subdomains, 
the condition for correctness is that PV(I) and PS(I) be equal after m events (m kMC steps) have been consid­
ered. For the simplified case shown in Fig. 1 involving two particles, the interaction probability in serial is 
obtained from all the different possibilities: 

PS(I) =P i (A) +Pj(B) + P2(AA) + P2(BB) + P2(AB) + P2(BA) (3) 

where -Pi (A) and Pi(B) are the probabilities for the interaction to occur in just one move by either A or B; 
P2(AA) and P2(BB) are the probabilities for the interaction to occur by two consecutive moves by either A 
or B; P2(AB) is the probability for the interaction to occur by the sequential combination of an A move 
and a B move (or, if viceversa, P2(BA)). Each one of these probabilities includes two distinct contributions, 
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Fig. 1. Schematic diagram of a conflict in parallel kMC. Two particles A and B located on opposite sides of a processor boundary (dashed 
line) are randomly chosen at the same time to move within the capture radius of one another: d < dc = dA + dB. 

for example Pi (A) = jf-ps\, where -^~ is the probability that particle A is selected during a Monte Carlo step, 
and psl is the probability that A end up within a distance dc 

mind, and assuming that the particle rates rA and 
P2(AB) = P2(BA)), the detailed expression for PS(I) is: 

PS(I) -Psl 
I? 
Rt, 

-Psl 
R 

2 Ps2 
R 

2 Ps2 
, > " A > " B 

R„, 

from particle B in a single jump. Bearing this in 
rB are time and position independent (i.e. 

(4) 

In parallel, the interaction probability is given by: 

PP(J) = P(A)P(B) +P(B)P(A) +P(AB) (5) 

where the first term represents the interaction probability when A is chosen and B is not; the second term is the 
complementary of the first; and P(AB) represents the probability that both particles react after concurrent 
jumps, akin to the situation illustrated in Fig. 1. Therefore: 

^ P ( / ) = 
_Tk_ 1 -

>"B 

Rrr 
PV1 

>"B 

Rr, 
1 - rA 

Rrr 
PV1 

r_ATB 

Rl 
~PV2 (6) 

where, as above, p , and pv2 are, respectively, the probabilities to react in a single jump by either particle, or in 
concurrent jumps by both particles. Strictly speaking, the jump probabilities psl, ps2,pvi, and^>p2, are overlap 
integrals of the probability distribution functions solution to the diffusion equation (see Section 3) subject to 
the condition d < dA + dB. For simplicity, however, we have computed all the jump probabilities numerically 
using specifically-tailored Monte Carlo simulations for the simplified scheme shown in Fig. 1. In Fig. 2 we plot 
the error between the serial and parallel calculations, defined as (PS(I) — PV(I)), as a function of the separation 
distance between the interacting particles. For this simplified case, rA = rB = r„ Rtot = 2Rmilx, and the interac­
tion probabilities in each case are: 

Ps(I) 

PPV) 

R max 
2 

Psl 
Rrr 

~Ps2 

2n 

Ri 
•[Pp2-2p p i ] + ^ P p l 

Rr, 

Error = PS(I) - Pp(7) = ^ - \ps2 -Pp2 - 2Ppl] 
Rrr 

•\Psi - 2 P p i ] 

(7) 

(8) 

(9) 
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Fig. 2. Interaction probability error between a parallel calculation involving two particles located in different domains, and an equivalent 
serial calculation. Results are given as a function of the separation distance between the two interacting particles (in units of dc, the 
interaction distance) for a family of curves for different r,/i?mal ratios (in legend, although several more have been obtained, not shown for 
clarity). The error converges rapidly to zero as particles become separated beyond d > 3dc, except for the worst case scenario of one 
particle per domain (r,/i?mal = 1), which converges for d > 4dc. 

Results in Fig. 2 are given for a family of curves with different ^- ratios (in legend). One can readily see 
that for large numbers of particles per PE (small ^ZL- ratios) the error rapidly converges to zero. We have 
also calculated the error varying the value of Rmiix and have seen that convergence is accelerated. These 
results suggest that conflicts are indeed important only in cases with few particles per processor, in close 
proximity to one another, which is precisely where our method is expected to underperform. For large sys­
tems with typical particle densities (e.g. in the examples discussed in Section 3, ^ - ~ lCr3-lCr4), neglecting 
conflicts results in very small errors, as will be showcased in Section 3.2, where our pkMC simulations pro­
vide a very accurate kinetic evolution disregarding the treatment of conflicts. It is worth mentioning that a 
fine-tuned ORB can also help drive the system towards the ideal conditions for the application of our 
method, namely large numbers of particles per PE, in large spatial domains. Evidently, under such condi­
tions, spatial locality is achieved, and events within one subdomain can be considered independent from 
events in other Qk. Conversely, when the particle separation distance (or the number of walkers per proces­
sor) is low, causal dependencies develop among events, which, if not treated properly, can lead to a flawed 
kinetic evolution. This effects have been noted by Merrick and Fichthorn in their study of thin film growth, 
where boundary shifting was seen to play an important role in the efficiency and accuracy of the calcula­
tions 

Fig. 2 can be taken as the basis from which to redefine PV(I) so that the interaction error is zero. This is a 
necessary condition to make our method rigorous from a mathematical standpoint. All the error curves in the 
Figure are seen to follow the same qualitative trends (rapid decay), which could be used to fit a general error 
function from which to extrapolate to correct PV(I) during a simulation. Another possibility is to compute the 
ps and p analytically, and bias p so as to comply with the requirement of zero error. Whichever the case, at 
present we simply outline the conditions under which our pkMC simulations reach satisfactory levels of accu­
racy depending upon the problem under study, with no explicit treatment of these issues. However, we want to 
emphasize that, although not rigorous, these features make our method a controlled approximation, defined 
as one where (i) the error can be calculated intrinsically, i.e. during the course of a simulation; and (ii) this 
error can be decreased arbitrarily in another simulation of the same type by modifying a few problem-depen­
dent parameters (e.g. in Fig. 2 the number of processors and the domain decomposition chosen) that can be 
identified a priori. 

ri/Rmax=1-000 



3. Applications 

3.1. Diffusion of independent particles 

We have studied diffusion of independent particles as a simple test of the basic ideas, as a validation of the 
time-scaling of the method, and as a first vehicle for assessing the parallel efficiency. Pure diffusion without 
volumetric terms satisfies the following master equation: 

-DV1 p(x;0 = 0 (10) 

where p(x; t) is the time and space-dependent particle number density and D is the diffusion coefficient. In this 
case the method is exact, as there is no possibility of conflicts. We consider two cases with known analytical 
solution involving diffusion in an K-dimensional square domain of side a, Qa, subject to the following bound­
ary conditions: 

(i) Absorbing ('black box') boundary conditions: 

P(x;0) = P o n c o s ( ~ ) ' xeQ" 

p(x;t) 
< x = l 

0, x e dQa 

where p0 is a constant, 
(ii) Periodic boundary conditions (PBC): 

p(x;0)=p0n 
<x=l 

P\X\, X 2 , . . . , Xa7 . 

= P(xl,x2, 

1 (2TCCX cos 
a \ a 

x e Qa 

, Xn , I j 

, Xr, I t CI, , Xn: IJ , VOt 

Here we focus on the two-dimensional (2D) case. In both cases (i) and (ii) the solution of the diffusion equa­
tion is given by the time dependent Green's function for an infinite medium with diffusion constant D: 

G(x,x0;t) 

(*-*o)z 

e 2c2 

V4nDt 
(11) 

where x and x0 are the initial and final position of each walker, t is the time, and a2 = 2Dt is the mean square 
displacement. For a fixed D, the mean square displacement must be conserved in all Qk, from which it follows 
that, for each walker i, tt = StvRmiLX/rt. Both of these cases are eigenvalue problems with known eigen­
values of (i) Aabs = -a \/2D; and (ii) APBC = -a V^D- Fig. 3 shows the comparison between the analytical solution 
and our parallel algorithm for case (i) with a = 1 cm, Dt = 1 cm2 s_1, and p0 = 131,072 walkers. For these val­
ues, /labs = 4.443 s~2, while in a series of runs with K = 2" (n = 1 , . . . , 7) processors we obtained an average 
value of 4.410 ± 0.042 s~?. For case (ii) with the same parameters, we show in Fig. 4 the time evolution with 
eigenvalue APBc = 6.28 s~2 of the spatial particle distribution (ii). The plot contains the projection of p(x; t) on 
one of the box dimensions at four different times. Note that, for a = 1 cm and D = \ cm2 s_1, the exponent of 
the time dependent terms is ~40 so that the convergence to p0 is very fast. We obtain (/lPBc) = 6.27 and an 
average error of ±4.4% with respect to the analytical value of 6.28 s~?. For all other parallel runs performed 
the values were of the same order of magnitude. In this particular case (ii) the initial particle density evolves 
with time towards a more flattened profile. Thus, the utilization ratio derived from the initial ORB will grad­
ually worsen as walkers diffuse and the mapping between the spatial particle distribution and the initial do­
main decomposition degrades. For the specific simulation shown in Fig. 4, the UR decreases from its 
initial value of 97.2% to a steady state value of ~77.5% after homogenization has completed. Fig. 5 illustrates 
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Fig. 4. Comparison between pkMC for 16 processors and the analytical solution of the time evolution of the spatial density profile for the 
case (ii) of diffusion without particle interactions and periodic boundary conditions. 

the temporal variation of the UR for this case, compared with the case of a flat particle density profile using 
the same number of processors. While both cases start out at UR « 97%, the domain decomposition that 
maps the initial sinusoidal particle distribution in (ii) becomes gradually unsatisfactory, resulting in a stea­
dy-state UR of ~77.5%>, compared to a value of 96.8%> for the flat density profile. Although these results, 
which are perfectly satisfactory, have been obtained for a single ORB, as noted above, nothing precludes car­
rying out subsequent ORBs to improve the efficiency when the value of UR drops below some problem-spe­
cific (arbitrary) tolerance. 
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3.2. Diffusion with particle interactions 

Next we turn to the study of cases where particles interact. In particular, we consider the multiparticle reac­
tion NA —> 0 (where TV is the number of reacting particles) and the two-species annihilation A + B —> 0. In 
both cases, boundary conflicts as denned in Section 2.3 may arise, although the chosen simulation conditions 
are such that the errors, as given by Fig. 2, are almost negligible. Fig. 6 shows the time evolution in 2D of an 
ensemble of 32,768 type walkers with a = 1 cm, D = \ cm2 s_1, and dA, the particle interaction radius, equal to 
1CT5 cm. For an arbitrary value of TV the appropriate asymptotic decay is n^r Here we have chosen 
dc = 2dA small enough to minimize the number of interactions for which N > 2, i.e. p{t) is expected to scale 
approximately as l/t, which is equivalent to the biparticle (A + A —> 0) annihilation time decay. The figure 
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Fig. 6. Comparison between a serial BKL run (continuous line) and a parallel run with 64 processors (open diamonds) for the problem of 
multiparticle NA —» 0 annihilation with periodic boundary conditions. The asymptotic behavior ~ l/t expected for this reaction is also 
shown. 
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shows results for 64 processors and a single-CPU BKL run, with excellent agreement between both calcula­
tions. Also shown is the \/t asymptotic trend characteristic of the A + A —> 0 reaction. The time evolution 
of the UR in this particular case varies with the number of processors K, ranging from 98% to 89% for 
K = 4, and from 97% to about 70% for K = 32 (shown in Fig. 5). 

The two-species reaction A + B —> 0 is important in many physical and chemical processes, and has been 
studied in detail in the literature In principle, the kinetics of a random homogeneous bimo-
lecular system with cross-annihilations and equal initial populations pA(0) = pB(0) is governed by two param­
eters, namely, the capture radius dc, and the typical diffusion length, £ = \/4DSt. The relative values of £ and dc 

give rise to two well-differentiated regimes. In the so-called reaction-limited regime (RLR), £ > dc, and the 
system obeys an asymptotic decay law of the type l/kt, where & is a rate constant. However, in the diffu­
sion-limited regime (DLR), £ < dc, spatial fluctuations asymptotically result in the separation of A and B par­
ticles into A and B-rich domains. In this case, the kinetics is considerably decelerated and the system evolves as 
n. Fig. 7 shows pkMC calculations for both the reaction- and the diffusion-limited regimes and their corre­
sponding asymptotic decay laws. For the DLR case we have used £ = 5.0 x 10~4 and 
dc = dA + <iB = 2.0 x 10~2 cm, whereas, for RLR, we used values for £ and dc of 10~2 and 2.0 x 10~5 cm 
respectively. It is quite clear from the figure that the parallel kMC calculations capture the correct asymptotic 
kinetics in each case. To further analyze the separation kinetics (or lack thereof) in the RLR and DLR, we 
show in Fig. 8 the A-B pair correlation function, gAB(r), for both cases.4 gAB(r) measures the probability 
of finding a B-type particle from an A particle, averaged over the entire simulation area. These probabilities 
are given relative to the overall background particle density ((p)) in each case, i.e. a probability higher than 
unity at a distance r simply means that, at that distance, the pair density of particles is higher than (pB). In the 
DLR, where particles separate into A and B-rich domains, gAB(r) is initially very low, corresponding to a B-
depleted, A-type domain. As the distance is increased, the pair correlation function gradually reaches its back­
ground value of 1.0. On the contrary, in the RLR, where homogenization is expected, gAB(r) resembles the 
pair distribution for an ideal gas. Different amounts of roughness can be appreciated in both curves, presum­
ably indicating short and medium range order. In summary, our parallel calculations satisfactorily capture the 
time and spatial correlations of a particle population subject to the A + B —> 0 kinetics. 

In both of these cases, the simulated kinetics follows the expected asymptotic behavior due to the scarcity of 
boundary conflicts of the type specified in Section 2.3. In general, one can obtain a first-order estimate of the 
error incurred by neglecting boundary conflicts by entering Fig. 2 with a characteristic particle separation dis­
tance and a r,-/Kmax ratio. Particularly, for the multiparticle annihilation case (NA —> 0) above, with a priori 
homogeneous particle distributions, the average inter-particle separation is d ~ p~? = 5.5 x 10~3 cm, which 
in units of interaction radius (dc = 2.0 x 10~5 cm is d «275dc. For 64 processors, the initial ratio 
rt/Rmsa ~ 0.002. Entering the corresponding error curve with these two values yields an error of 1.3 x 10~8 

(virtually zero). Indeed, for the simulation shown in Fig. 6, we have explicitly counted the number of times 
a conflict such as that depicted in Fig. 1 takes place and have found zero occurrences, in agreement with 
the computed value. As the simulation proceeds and the particle concentration diminishes, the kinetics is char­
acterized by increasing separation distances and rt/Rmilx ratios, which have opposite effects on the total error. 
In all the cases considered in this work we did not observe a significant deviation of the error with respect to 
the starting estimation as given by the initial d and r,/7?max. The dynamic behavior of the error, governed by 
the interplay between these two parameters, will nonetheless vary for each physical problem. Here, we take 
these results as a partial validation of the analyses performed in Section 2.3. 

3.3. Discussion on the generality of the method 

The time scale intrinsic to any physical process governed by diffusion is x « l2/D, where / is a characteristic 
length scale. As explained in the previous Section, in a 2D system with a homogenous particle density p, 
I ~ p~2, which gives x « (pD)~ . In rejection-free kMC algorithms such as BKL, this time scale acts as an 
upper bound on the value of St that can be simulated. The time scale inherent to a physical process is of course 
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Fig. 7. Two-species annihilation kinetics (only the A-type normalized density is shown) for the reaction (£ s> dc) and diffusion (£ < dc) 
limited regimes as obtained with our parallel kMC algorithm. The expected asymptotic decay law in each case is also shown for reference. 
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Fig. 8. A — B pair correlation function for the diffusion (DLR) and reaction (RLR) limited regimes. The function measures the probability 
to find a B particle from an A-type particle, averaged over the entire simulation cell. The particle distance is normalized to half of the box 
length. 

independent of the method employed to simulate it, which means that, in cases where x may be relatively 
small, e.g. in concentrated systems, or in systems with particles with a large interaction radius, there exists 
an effective cap on the time step gain that our algorithm can provide. In other words, one must impose 
8tv < x to ensure the correct kinetics in the 'physical' sense. This inequality must be satisfied dynamically over 
the course of a pkMC simulation, which can be readily attained e.g. by enforcing: 

1 
(12) 

In practice, this requires that Rmiix be adjusted by increasing the value of the {rM} as much as necessary. Evi­
dently, in cases where St is reasonably close to x from the outset, this results in a loss of efficiency (given by Eq. 



(1)) that may limit the usefulness of our algorithm. Furthermore, in Green's functions Monte Carlo _, such 
as in the present work for continuum systems, enforcing Eq. (12) does not necessarily guarantee that 
Sr = |r — r0| < /, as there exists a small probability, from sampling Eq. (11), that violates this premise. This 
is a limitation intrinsic to BKL that carries over to our method, which, nonetheless, by setting an upper limit 
on 8tv, gives a more accurate kinetic evolution. In discrete systems, where / is quantized, this is no longer a 
concern, and Eq. (12) suffices to give the exact kinetics (provided, of course, that boundary conflicts are cor­
rectly resolved). Additionally, this measure is necessary to treat problems where the time scales associated with 
different events differ considerably, as is the case in the thin film growth problem studied by several researchers 

characterized by monomer deposition and diffusion rate relative ratios of the order of 1CT3 — 1CT7, or 
in irradiation damage accumulation, where vacancies and interstitials diffuse with rates that differ by three to 
four orders of magnitude 

We acknowledge this limitation in our method, which effectively sets a limit on the maximum time step gain 
that can be achieved. Note, however, that, subject to the qualification relating to boundary conflicts (here very 
small), our method provides very accurate results. Nevertheless, as with other parallel methods published in 
the literature, a careful analysis of the timescale characteristics of each kinetic problem is advised prior to the 
use of our algorithm. 

4. Performance analysis 

Next we turn to the study of the parallel efficiency of our algorithm as implemented on a distributed-mem-
ory Linux cluster with 2.4-GHz AMD Opteron processors with version 1 of the MPI libraries We define 
two metrics for our scalability analysis, namely 'weak' and 'strong' scalability. For simplicity, we study these 
metrics on a PBC system in 2D with a uniform particle distribution with no interactions. The PBC case is an 
extreme one in the sense that the parallel capabilities are minimally exploited. Recalling that walkers are reas­
signed to processors after every move, relative to other diffusion problems, the communication-to-calculation 
ratio is disproportionately high in PBC simulations, where no particle interactions exist and all that a calcu­
lation cycle entails is the trivial diffusion of a given walker. Any relative increase in the calculation component 
of the overall computational cost will result in an improved parallel performance. A natural way to achieve 
this is to subdivide each Qk into several cells - denoted by the subindex j - so as to break the one-to-one cor­
respondence between processors and Qk In this manner, j calculations are performed per each 
communication during every pkMC iteration. The results shown below are for j = 64, found to be the opti­
mum value of j for the PBC problem.5 Nevertheless, comparisons between j = 1, 64 are provided to give an 
idea of the relative improvement achieved in each case. 

The PBC case used for the scalability studies is special in that it is error-free - there are no particle inter­
actions - and, therefore, there is no need to insert an extra step in the algorithm to tally the number of bound­
ary conflicts that occur during a simulation. The insertion of this step, as it was done in Section 3.2, will affect 
the efficiency negatively, just as solving for boundary errors would. The definition of our method as a con­
trolled approximation implies that we must be capable of computing the error during the course of a simula­
tion, although the choice of whether to do it or not depends on each problem and the desired compromise 
between efficiency and accuracy. These consideration must be kept in mind when comparing the efficiency 
results shown in the next sections with those of other methods, rigorous or not, where conflicts are more 
actively dealt with. 

4.1. Weak scalability 

Weak scalability (WS) measures the performance of a parallel algorithm using K processing units when the 
problem size is increased K-io\d, From steps (5) and (7) of our algorithm, it is clear that, although not strictly 
necessary for this computation, our program incurs a communications overhead when particles that move 



across domain boundaries are reassigned to the corresponding PE's. As we show in Appendix B, this commu­
nications cost shows a dependence with the number of processors of the type (Eq. (B.7)): 

WS = 1 + fl(log^)6 (13) 

The weak scalability is plotted in Fig. 9, which shows a family of curves for three different numbers of walkers 
per processor (see legend), all for j = 64. It is common in the literature to find the inverse of WS, the parallel 
efficiency J/WS, as the metric of choice to study the parallel performance, so in the figure we give the correspond­
ing values of »/ws for comparison (in the right-hand axis). Essentially, WS, or, equivalently, J/WS, estimates the 
cost of parallel communications when all other factors are kept invariant. Ideal weak scaling is represented by 
a horizontal line at WS = 1, and, thus, the deviation from horizontality illustrates the relative parallel perfor­
mance. As the figure shows, the agreement between Eq. (13) and the data points is excellent. The coefficients a 
and b of the non-linear fits are given in Fig. 9's legend, and their ranges are (0.12 < a < 0.21) and 
(1.31 < b < 1.45), respectively. The latter are on the higher end of those computed by Shim and Amar 
and Merrick and Fichthorn using synchronous relaxation algorithms with similar efficiency behavior. 
However, a and b axe strongly problem and machine dependent, both of which were different in Refs. 

which diminishes the meaningfulness of the comparison. By way of example, the efficiency for the 
216-particle case is ~86% for K = 4, and ~52% for 64 processors. As expected, the method scales better (sig­
nificantly) when the number of particles per processor is increased. Since our aim is to use large parallel archi­
tectures to study large problems, this is the most relevant regime, and weak scalability the more meaningful 
metric. 

In the inset to Fig. 9 we show the comparison between the standard case (j' = 1) and a case for which each 
QK is subdivided into 64 cells (j = 64), both for 215 particles per processor. As expected, WS is slightly better 
when j is increased. The curves, especially that for j = 1 display marked increases from one value of K to the 
next. This is because the communications overhead has been shown to correlate directly with the perimeter-to-
surface area ratio The communication-to-calculation ratio in 2D is known to improve as the aspect ratio 
of the subdomains tends toward perfect quadrature Of course, a perfectly quadratic decomposition can 
only be achieved when K is an even power of 2, e.g. 4, 16, 64, etc., which explains why the curves in the inset to 
Fig. 9 display abrupt increases at, for example, K— 2 and K— 8. 
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Fig. 9. Weak scalability of our algorithm for PBC cases with different numbers of particles per processor (in legend) withy = 64 (see text). 
The points are the data computed in our runs, whereas the lines are fits using Eq. (13). The coefficients a and b for each case are given in the 
legend. Inset: comparison between the j = 1 and j = 64 cases for the 21'-particle problem. The K and WS axes have the same scale as the 
main graph. 



Fig. 10. Strong scalability for our parallel kMC algorithm as implemented in our prototype code with j = 64. Three PBC cases are 
considered with 220, 221, and 222 walkers. The curves confirm the tendency outlined in the text that our method behaves better for large 
problems with many particles. Inset: comparison between the j = 1 and j = 64 cases for the 222-particle problem. The K and Speedup axes 
have the same scale as the main graph. 

4.2. Strong scalability 

In contrast, strong scalability measures the computational speedup when an increasing number of proces­
sors is applied to a problem of fixed size. Results for up to K — 64 processors for three PBC cases with, 

on 01 oo 

approximately, one, two and four million ( 2 , 2 , and 2 ) walkers are presented in Fig. 10. Results in 
Fig. 10 have also been obtained using j = 64 cells per processor. Results for j = 1 and 222 particles are given 
in the inset to the Figure, where a slightly worse scaling is measured with respect to the j = 64 case (also shown 
in the inset). For the results shown in Fig. 10 it is clear that, as in the previous section, the larger the problem, 
the better the scalability, although by a modest margin. As above, we have fitted the data shown in the figure 
to Eq. (B.4): 

n, = — -b (14) 

for which we have obtained coefficients in the range of 0.66-0.92 for a and 0.50-0.68 for b (assuming, from 
Fig. 5, that UR « 1). This translates into efficiencies, ?/st, of the order of almost 100% for K = 2 to 
j / s t « 0.50 ~ 0.55 for 64 processors. In the (K < 64)-range explored, all three curves increase monotonically, 
albeit concavely, so that the parallel performance is eventually expected to follow Amdahl's Law for problem 
size bound scaling [30], and gradually saturate. 

The PBC results effectively represent a lower-bound estimate of the general scalability behavior of our algo­
rithm, which will presumably be enhanced in problems where the communication-to-calculation ratio is not as 
unfavorable. Also, as discussed in Section 2.2, the total speedup benefits from two distinct contributions, 
namely (i) the time step gain derived from decreasing the length of Rtot, and (ii) a contribution associated with 
the ORB decomposition implemented here. As implemented, the computational cost associated with selecting 
an event out of the frequency line is 0(N).6 After performing our ORB, each processor must now perform a 
search with cost 0(f) . In other words, ignoring the overhead, there is a factor of K speedup related simply to 



the cost of carrying out smaller search operations in parallel. These considerations are also formulated and 
analyzed in Appendix B. 

5. Summary 

In summary, we have developed a novel parallel kinetic Monte Carlo algorithm that promises to access 
time and length scales as-of-yet unexplored in kMC simulations. Our algorithm is based on a perfectly-syn­
chronous parallel decomposition of the master equation, to which it provides an exact solution for the case 
of independent walkers. The correct simulation of interacting systems is contingent on the rigorous treat­
ment of boundary conflicts, which we will address in future publications. Regardless, in the limiting case 
of large problems (large number of particles, many PE's), our algorithm provides fairly accurate solutions 
for interacting systems. The efficiency of the method is dependant on the characteristics of the problem at 
hand and the optimization facilities of the decomposition chosen. We have shown the validity and perfor­
mance of our algorithm in a few well understood diffusion problems, with reasonable scaling and excellent 
agreement between our computational results and analytical and serial cases. Due to its trivial implemen­
tation in parallel architectures, our algorithm suggests itself as a practical alternative to other previously 
published parallel methods. 
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Appendix A. General proof of correctness: master equation 

Here we prove that the synchronous decomposition of a serial master equation into K subdomains results in 
the same master equation when the null events are introduced. Let us start by considering an infinite system 
with n particles characterized by an internal state X(n), and represented by a homogeneous medium with peri­
odic boundary conditions. In this ideal system, particles can either diffuse, with rate constant d, or annihilate 
(two by two) with rate constant a. The total rate of the system Rtot is: 

Rtot = d(X) + a(X) (A.l) 

Then, the probability that in step s + 1 the system is in state X(n) is (for simplicity, we will assume that state X 
is characterized solely by the number of particles n, i.e. X =X(n)): 

P(X;s+l)=P(X + 2;s)^ + P(X;s)dP- (A.2) 
-"tot -"tot 

In other words, the probability that the system is in state X at step s + 1 is the probability that the system is in 
state X + 2 at step s times the probability that, in this state, two particles will annihilate (a(X)/Rtot), plus the 
probability that the system is in state X at step s times the probability that, in this state, a particle will diffuse 
(d(X)/Rtot). Making use of the fact that d(X) = Rtot — a(X), we have: 

P(X;s+l) = P{X + 2 ; , ) & - + P(X;s)*»* ~ a{X) (A.3) 
- " to t - " to t 

(P(X; s+l)-P(X; s))Rtot = (P(X + 2;s)- P(X; s))a(X) (A.4) 

Taking increments and assuming that At = l/Rtot'-

^ f f i = (P(X + 2;s)- P(X; s))a(X) (A.5) 



In the limit of infinitesimal At, Eq. (A.5) is reduced to: 

dP(X) 

dt 
= (P(X + 2;s)- P(X; s))a(X) (A.6) 

This is the master equation that represents our idealized system, where the time step to go from s to s + 1 is 
\/Rtot. Now let us decompose our initial computational box into K domains, Qh according to our parallel 
algorithm. In this case, for each subdomain i, we have to add three new transitions, namely the probability 
that a particle will escape each Qt by diffusion, e(Xl), the (complementary) probability that a particle will come 
from other subdomains, c(X,), and, to ensure synchronicity, the null event, r0i. In this case, we have that the 
total rate in each Qt is: 

tfmax = d{Xt) + a{Xt) + e{Xt) + c{Xt) + r0l (A.7) 

Now, the probability that in step s + 1, in each subdomain i, the system will be in state X, is: 

p^Xr,* + l) = P , ( ^ , + 2; S) ^ + p^Xr,*) ^ + P , ( ^ - + 1; *) ^ + W - - l; *) ^ 

+ Pi(Xi;s)^- (A.8) 

Making use of the fact that r0, = Rmax — d(Xt) — a(Xt) — e(Xl) + c(X,), we then have: 

Pt{Xt;s + l )^m a x = Pt{Xt + 2;s)a{Xl) + Pt{Xt;s)d{Xt) + Pt{Xt + 1;s)e{Xl) + Pt{Xt - 1;s)c{Xt) 

+ P,(^;^)(^max - d{X,) - a{Xt) - e{Xt) + c{Xt)) (A.9) 

which simplifies to: 

(Pt(Xt;s + 1) - P,(X,;s))tfmax = (P,(X, + 2;s)- P,(X,; s))«(X,) + (P,(X, + l;s)- Pt{Xt;s))e{Xt) 

+ (P.iX, -l;s)-P,(Xi;s))c(X,) (A. 10) 

Now, operating as for Eq. (A. 5): 

^ X , ) = (Pi(Xi + 2;s)- PiiXirfMX,) + (PiiXt + l;s)- P , f e ) M ^ ) + (P,(X - 1; *) 

-P.iX.-s))^,) (A. 11) 

where, in this case, Atv = \/Rm!a is the time needed to go from step s to step s + I. 
We now sum over all Qt: 

E " ^ 7 ^ = E { ( W + 2 ^ ) - P - ^ s)MXd+(Wi + !;*)- Pt(Xt; s))e(Xt) Atv 

+ (Pt(Xt -l;s)-P,(X,-s))c{X,)} (A. 12) 

Evidently, the sum over all subdomains of the [(P,(X, + \;s) -Pi{Xi;s))e{Xi)+ (P,(X, -\;s) -P,-(X,-;s))c(X,-)] 
terms must be zero, as all particles coming into any one Qt do it after having escaped from other Q}. In other 
words, the detailed particle balance makes these terms vanish. Therefore, the reduced equation is: 

- y - = J2 ( ( W + 2;s)-Pl(Xl;s))a(Xl)) (A. 13) 

Provided that boundary conflicts are solved rigorously, the rates a(Xt) are not affected by the summation, as 
they are simply a constant acting on the internal variables defining state X,, i.e. J2fP'(Xi)a(Xj) = P(X)a(X). 
Then: 



^ p = (P(X + 2;s)- P(X; s))a(X) (A. 14) 

where, as in Eq. (A.6), taking infinitesimal values of Atv we have: 

dP(X) 
dt 

•=(P(X + 2;s)-P(X;s))a(X) (A. 15) 

In other words, Eqs. (A.6) and (A. 15) are equivalent, and we prove that a synchronous parallel decomposition 
of a global master equation for this idealized problem results in the same master equation as formulated in Eq. 
(A.6). In practice, what this means is that, on average, our pkMC method advances time by an amount equal 
to that resulting from simulating K events sequentially in serial BKL. In reality, as Eq. (1) shows, Eq. (A. 15) is 
advanced faster in time by a factor of (K • UR). 

Appendix B. Parallel efficiency 

The parallel efficiency, j / s t , related to strong scaling, is defined as: 

"• = s - (B-1) 

where ts and tv are, respectively, the times expended in identical serial and parallel calculations, and K, as 
above, is the number of processors. The computational cost of performing a serial calculation is the time it 
takes to complete a kMC cycle times the number of cycles, ns. The CPU time per cycle can be decomposed 
into the cost of doing a frequency line search - which, as we have shown in Section 4.2, scales as <D(N), where 
TV is the total number of particles - plus the execution time of an event, ?exe. In the same fashion, tv is composed 
of a 'serial' (calculation) time plus a communications time. The calculation time comprises an execution cost, 
nvtexe, where nv is the number of cycles needed to complete the parallel calculation (nv < ns), and a search 
cost that scales as <D(N/K). Evidently, texe is the same for a parallel calculation, and depends only on the 
characteristics of the processor and the compiler. Taking all these details into account, Eq. (B.l) can be written 
as: 

= nstexe + nsO(N) = jh_ ( texe + Q(N) \ 
Vst ~ K((nvtexe + nvO(N/K)) + nvtcomm) ~ Knv \texe + 0{N/K) + tmmmJ 

The number of serial and parallel kMC cycles needed to complete a simulation of duration tsim is, respectively: 

'sim 

'sim 
p Stv 

where Sts and 8tv are the average serial and parallel time steps (Sts = C»BKL = 1/^tot, <̂ P = 1/̂ max)- From Eq. 
(2) we have that ns/nv = K • UR, which means that the first term in the right-hand side of Eq. (B.2) is equiv­
alent to UR. In the spirit of the so-called logP model for global communications we take the MPI 
communications overhead to be proportional to (log A") , where b is a constant. Assuming that the CPU cost 
of performing linear searches and the communications cost are characterized by two constants c0 and c\ 
(architecture and compiler dependent),7 Eq. (B.2) becomes: 

VA~ texe + c0(N/K)+Cl(logKf 



Assuming texe < c0N, c0(N/K): 

c0N UR UR 

~c0(N/K) +Cl(logK)b ~ \/K+{cl/c0N){\ogK)b ~ \/K + a{\ogK) 
UR ^ J * " „ . . , „ » = , „ , , "~ ^ = , , „ . „ . _ » (B.4) 

Eq. (B.4) gives an idea of the factors that affect the parallel efficiency. For example, the numerator indicates 
that i]st is directly proportional to the utilization ratio, and, hence, to the time step gain introduced by the par-
allelization. It also shows that the efficiency is inversely proportional to the factor a(logK)b, associated with 
the cost of point-to-point communications in distributed parallel systems. In the limit of large numbers of pro­
cessors, \/K <C logiT, and r\ « UR/a(logif) , i.e. the parallel efficiency does not saturate, but converges 
slowly to zero. On the other hand, when K = 1 (no communications), t]st « UR, which gives the maximum 
theoretical efficiency, consistent with Eq. (2). 

For its part, the parallel efficiency, J/WS, associated with weak scaling, is denned as: 

*- = Ws = ! (B-5) 

where t's is the CPU time required to complete a standard serial simulation of one domain with one PE, and t'p 

is the time required to simulate a system K times as big as the serial one with K processors. In this case, both 
approaches require the same number of kMC cycles to complete the simulation, i.e. ns = nv = n. Then: 

" — TE (B.6) 
«4xe + C0 (log A") 

\b 
where, as before, we have assumed that the communications cost is proportional to a (log A") . Evidently, with 
the communications overhead factored out, texe is the same for both the serial and parallel cases, as the parallel 
simulation is the equivalent of K replicas of the serial simulation. Therefore, J/WS is simply: 

Vm ~ 1 + (c0/ntexe)(logK)b ~ l+a(logK)b ( B ' ? ) 

in agreement with recent works published in the literature Of course, for K = 1 (serial case), 
T/WS = 1/WS = 1, which is the ideal limit for weak scaling. 
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