30 research outputs found

    Possible large phase in psi(2S) -> 1-0- Decays

    Full text link
    The strong and the electromagnetic amplitudes are analyzed on the basis of the measurements of J/psi, psi(2S) -> 1-0- in e+e- experiments. The currently available experimental information is revised with inclusion of the contribution from e+e- -> gamma * -> 1-0- . The study shows that a large phase around minus 90 degree between the strong and the electromagnetic amplitudes could not be ruled out by the experimental data for psi(2S).Comment: 4 page

    Heavy quarkonium 2S states in light-front quark model

    Full text link
    We study the charmonium 2S states ψ\psi' and ηc\eta_c', and the bottomonium 2S states Υ\Upsilon' and ηb\eta_b', using the light-front quark model and the 2S state wave function of harmonic oscillator as the approximation of the 2S quarkonium wave function. The decay constants, transition form factors and masses of these mesons are calculated and compared with experimental data. Predictions of quantities such as Br(ψγηc)(\psi' \to \gamma \eta_c') are made. The 2S wave function may help us learn more about the structure of these heavy quarkonia.Comment: 5 latex pages, final version for journal publicatio

    Measurements of ψ(2S)\psi(2S) decays into Vector- Tensor final states

    Full text link
    Decays of the ψ(2S)\psi(2S) into vector plus tensor meson final states have been studied with 14 million ψ(2S)\psi(2S) events collected with the BESII detector. Branching fractions of \psi(2S) \rt \omega f_{2}(1270), ρa2(1320)\rho a_2(1320), K(892)0Kˉ2(1430)0+c.c.K^*(892)^0\bar{K}^*_2(1430)^0+c.c. and ϕf2(1525)\phi f_2^{\prime}(1525) are determined. They improve upon previous BESI results and confirm the violation of the "12%" rule for ψ(2S)\psi(2S) decays to VT channels with higher precision.Comment: 7 pages, 7 figures and 2 table

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Improved measurement of the branching ratio of J/psi-->K_S K_L

    Full text link
    The branching ratio of J/psi-->K_S K_L is measured with improved precision to be B(J/psi-->K_S K_L) = (1.82\pm 0.04\pm 0.13)\times 10^{-4}. using J/psi data collected with the Beijing Spectrometer (BESII) at the Beijing Electron-Positron Collider. This result is used to test the perturbative QCD ``12%'' rule between psi(2S) and J/psi decays and to investigate the relative phase between the three-gluon and one-photon annihilation amplitudes in J/psi decays.Comment: 10 pages, 14 figures, 2 tables, submitted to Phys. Rev.

    Psi(2S) two- and three-body hadronic decays

    Full text link
    We report measurements of branching fractions for psi(2S) decays into omega pi pi, b1 pi,omega f2(1270),omega KK, omega p pbar, phi pi pi, phi f0(980),phi KK, and an upper limit for phi p pbar final states based on a data sample of 4 X 10^6 psi(2S) events collected with the BESI detector at the Beijing Electron-Positron Collider. The branching fractions for b1 pi and omega f2(1270) update previous BES results, while those for other decay modes are first measurements. The ratios of psi(2S)and J/psi branching fractions are smaller than what is expected from the 12% rule by a factor of five for omega f2(1270),by a factor of two for omega pi pi, omega p pbar, and phi KK, while for other studied channels the ratios are consistent with expectation within errors.Comment: 9 pages,12 figures and 1 tabl

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore