17 research outputs found

    Агроэкологическая оценка минералогического состава почв

    Get PDF
    It is shown that the mineralogical composition of the soil is a factor when considering the lithology of soil at a lower hierarchical level. The mineralogical composition and determines the content ratio in the soil of nutrients and toxicants, ion exchange processes, soil resistance to degradation of soil fertility. It is the matrix of the formation of soil and regulates the transformation, migration and accumulation in soil of substances, energy and information of environmental and human impact.В работе показано, что минералогический состав почв является фактором почвообразования при рассмотрении литологии на более низком иерархическом уровне. Минералогический состав определяет содержание и соотношение в почвах элементов питания и токсикантов, процессы ионного обмена, устойчивость почв к деградации, плодородие почв. Он является матрицей формирования почв и регулирует трансформацию, миграцию и аккумуляцию в почве вещества, энергии и информации внешней среды и антропогенного воздействия

    Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter

    Get PDF
    The Martian mesosphere and thermosphere, the region above about 60 km, is not the primary target of the ExoMars 2016 mission but its Trace Gas Orbiter (TGO) can explore it and address many interesting issues, either in-situ during the aerobraking period or remotely during the regular mission. In the aerobraking phase TGO peeks into thermospheric densities and temperatures, in a broad range of latitudes and during a long continuous period. TGO carries two instruments designed for the detection of trace species, NOMAD and ACS, which will use the solar occultation technique. Their regular sounding at the terminator up to very high altitudes in many different molecular bands will represent the first time that an extensive and precise dataset of densities and hopefully temperatures are obtained at those altitudes and local times on Mars. But there are additional capabilities in TGO for studying the upper atmosphere of Mars, and we review them briefly. Our simulations suggest that airglow emissions from the UV to the IR might be observed outside the terminator. If eventually confirmed from orbit, they would supply new information about atmospheric dynamics and variability. However, their optimal exploitation requires a special spacecraft pointing, currently not considered in the regular operations but feasible in our opinion. We discuss the synergy between the TGO instruments, specially the wide spectral range achieved by combining them. We also encourage coordinated operations with other Mars-observing missions capable of supplying simultaneous measurements of its upper atmosphere

    Parallel loss of symbiosis genes in relatives of nitrogen-fixing non-legume Parasponia

    No full text
    Rhizobium nitrogen-fixing nodules are a well-known trait of legumes, but nodules also occur in other plant lineages either with rhizobium or the actinomycete Frankia as microsymbiont. The widely accepted hypothesis is that nodulation evolved independently multiple times, with only a few losses. However, insight in the evolutionary trajectory of nodulation is lacking. We conducted comparative studies using Parasponia (Cannabaceae), the only non-legume able to establish nitrogen fixing nodules with rhizobium. This revealed that Parasponia and legumes utilize a large set of orthologous symbiosis genes. Comparing genomes of Parasponia and its non-nodulating relative Trema did not reveal specific gene duplications that could explain a recent gain of nodulation in Parasponia. Rather, Trema and other non-nodulating species in the order Rosales show evidence of pseudogenization or loss of key symbiosis genes. This demonstrates that these species have lost the potential to nodulate. This finding challenges a long-standing hypothesis on evolution of nitrogen-fixing symbioses, and has profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants

    Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses

    No full text
    Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION. Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants

    Data from: Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses

    No full text
    Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION. Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plant
    corecore