110 research outputs found

    The Hopf algebra of Feynman graphs in QED

    Full text link
    We report on the Hopf algebraic description of renormalization theory of quantum electrodynamics. The Ward-Takahashi identities are implemented as linear relations on the (commutative) Hopf algebra of Feynman graphs of QED. Compatibility of these relations with the Hopf algebra structure is the mathematical formulation of the physical fact that WT-identities are compatible with renormalization. As a result, the counterterms and the renormalized Feynman amplitudes automatically satisfy the WT-identities, which leads in particular to the well-known identity Z1=Z2Z_1=Z_2.Comment: 13 pages. Latex, uses feynmp. Minor corrections; to appear in LM

    Improved lower bounds for the ground-state energy of many-body systems

    Full text link
    New lower bounds for the binding energy of a quantum-mechanical system of interacting particles are presented. The new bounds are expressed in terms of two-particle quantities and improve the conventional bounds of the Hall-Post type. They are constructed by considering not only the energy in the two-particle system, but also the structure of the pair wave function. We apply the formal results to various numerical examples, and show that in some cases dramatic improvement over the existing bounds is reached.Comment: 29 pages, 5 figures, to be published in Phys. Rev.

    New Lower Bound on Fermion Binding Energies

    Get PDF
    We derive a new lower bound for the ground state energy EF(N,S)E^{\rm F}(N,S) of N fermions with total spin S in terms of binding energies EF(N1,S±1/2)E^{\rm F}(N-1,S \pm 1/2) of (N-1) fermions. Numerical examples are provided for some simple short-range or confining potentials.Comment: 4 pages, 1 eps figur

    Criticality of the Mean-Field Spin-Boson Model: Boson State Truncation and Its Scaling Analysis

    Full text link
    The spin-boson model has nontrivial quantum phase transitions at zero temperature induced by the spin-boson coupling. The bosonic numerical renormalization group (BNRG) study of the critical exponents β\beta and δ\delta of this model is hampered by the effects of boson Hilbert space truncation. Here we analyze the mean-field spin boson model to figure out the scaling behavior of magnetization under the cutoff of boson states NbN_{b}. We find that the truncation is a strong relevant operator with respect to the Gaussian fixed point in 0<s<1/20<s<1/2 and incurs the deviation of the exponents from the classical values. The magnetization at zero bias near the critical point is described by a generalized homogeneous function (GHF) of two variables τ=ααc\tau=\alpha-\alpha_{c} and x=1/Nbx=1/N_{b}. The universal function has a double-power form and the powers are obtained analytically as well as numerically. Similarly, m(α=αc)m(\alpha=\alpha_{c}) is found to be a GHF of ϵ\epsilon and xx. In the regime s>1/2s>1/2, the truncation produces no effect. Implications of these findings to the BNRG study are discussed.Comment: 9 pages, 7 figure

    Moments of vicious walkers and M\"obius graph expansions

    Full text link
    A system of Brownian motions in one-dimension all started from the origin and conditioned never to collide with each other in a given finite time-interval (0,T](0, T] is studied. The spatial distribution of such vicious walkers can be described by using the repulsive eigenvalue-statistics of random Hermitian matrices and it was shown that the present vicious walker model exhibits a transition from the Gaussian unitary ensemble (GUE) statistics to the Gaussian orthogonal ensemble (GOE) statistics as the time tt is going on from 0 to TT. In the present paper, we characterize this GUE-to-GOE transition by presenting the graphical expansion formula for the moments of positions of vicious walkers. In the GUE limit t0t \to 0, only the ribbon graphs contribute and the problem is reduced to the classification of orientable surfaces by genus. Following the time evolution of the vicious walkers, however, the graphs with twisted ribbons, called M\"obius graphs, increase their contribution to our expansion formula, and we have to deal with the topology of non-orientable surfaces. Application of the recent exact result of dynamical correlation functions yields closed expressions for the coefficients in the M\"obius expansion using the Stirling numbers of the first kind.Comment: REVTeX4, 11 pages, 1 figure. v.2: calculations of the Green function and references added. v.3: minor additions and corrections made for publication in Phys.Rev.

    Monotonicity of quantum ground state energies: Bosonic atoms and stars

    Full text link
    The N-dependence of the non-relativistic bosonic ground state energy is studied for quantum N-body systems with either Coulomb or Newton interactions. The Coulomb systems are "bosonic atoms," with their nucleus fixed, and the Newton systems are "bosonic stars". In either case there exists some third order polynomial in N such that the ratio of the ground state energy to the respective polynomial grows monotonically in N. Some applications of these new monotonicity results are discussed

    Two-dimensional SIR epidemics with long range infection

    Full text link
    We extend a recent study of susceptible-infected-removed epidemic processes with long range infection (referred to as I in the following) from 1-dimensional lattices to lattices in two dimensions. As in I we use hashing to simulate very large lattices for which finite size effects can be neglected, in spite of the assumed power law p(x)xσ2p({\bf x})\sim |{\bf x}|^{-\sigma-2} for the probability that a site can infect another site a distance vector x{\bf x} apart. As in I we present detailed results for the critical case, for the supercritical case with σ=2\sigma = 2, and for the supercritical case with 0<σ<20< \sigma < 2. For the latter we verify the stretched exponential growth of the infected cluster with time predicted by M. Biskup. For σ=2\sigma=2 we find generic power laws with σ\sigma-dependent exponents in the supercritical phase, but no Kosterlitz-Thouless (KT) like critical point as in 1-d. Instead of diverging exponentially with the distance from the critical point, the correlation length increases with an inverse power, as in an ordinary critical point. Finally we study the dependence of the critical exponents on σ\sigma in the regime 0<σ<20<\sigma <2, and compare with field theoretic predictions. In particular we discuss in detail whether the critical behavior for σ\sigma slightly less than 2 is in the short range universality class, as conjectured recently by F. Linder {\it et al.}. As in I we also consider a modified version of the model where only some of the contacts are long range, the others being between nearest neighbors. If the number of the latter reaches the percolation threshold, the critical behavior is changed but the supercritical behavior stays qualitatively the same.Comment: 14 pages, including 29 figure

    Cluster Monte Carlo and dynamical scaling for long-range interactions

    Get PDF
    Many spin systems affected by critical slowing down can be efficiently simulated using cluster algorithms. Where such systems have long-range interactions, suitable formulations can additionally bring down the computational effort for each update from O(N2N^2) to O(NlnNN\ln N) or even O(NN), thus promising an even more dramatic computational speed-up. Here, we review the available algorithms and propose a new and particularly efficient single-cluster variant. The efficiency and dynamical scaling of the available algorithms are investigated for the Ising model with power-law decaying interactions.Comment: submitted to Eur. Phys. J Spec. Topic

    Weakly-Bound Three-Body Systems with No Bound Subsystems

    Get PDF
    We investigate the domain of coupling constants which achieve binding for a 3-body system, while none of the 2-body subsystems is bound. We derive some general properties of the shape of the domain, and rigorous upper bounds on its size, using a Hall--Post decomposition of the Hamiltonian. Numerical illustrations are provided in the case of a Yukawa potential, using a simple variational method.Comment: gzipped ps with 11 figures included. To appear in Phys. Rev.

    Vicious walk with a wall, noncolliding meanders, and chiral and Bogoliubov-deGennes random matrices

    Full text link
    Spatially and temporally inhomogeneous evolution of one-dimensional vicious walkers with wall restriction is studied. We show that its continuum version is equivalent with a noncolliding system of stochastic processes called Brownian meanders. Here the Brownian meander is a temporally inhomogeneous process introduced by Yor as a transform of the Bessel process that is a motion of radial coordinate of the three-dimensional Brownian motion represented in the spherical coordinates. It is proved that the spatial distribution of vicious walkers with a wall at the origin can be described by the eigenvalue-statistics of Gaussian ensembles of Bogoliubov-deGennes Hamiltonians of the mean-field theory of superconductivity, which have the particle-hole symmetry. We report that the time evolution of the present stochastic process is fully characterized by the change of symmetry classes from the type CC to the type CCI in the nonstandard classes of random matrix theory of Altland and Zirnbauer. The relation between the non-colliding systems of the generalized meanders of Yor, which are associated with the even-dimensional Bessel processes, and the chiral random matrix theory is also clarified.Comment: REVTeX4, 16 pages, 4 figures. v2: some additions and correction
    corecore