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J�erôme Goy(1), Jean-Marc Richard(1);(2), and Sonia Fleck(3),
(1)Institut des Sciences Nucl�eaires

53, avenue des Martyrs, 38026 Grenoble, France
(2)Institut f�ur Theoretische Kernphysik

Rheinische Friedrich-Wilhelms Universit�at

Nu�allee 14-16, D{53115 Bonn, Germany
(3)Institut de Physique Nucl�eaire

43, boulevard du 11 Novembre 1918, 69622 Villeurbanne, France

(August 15, 1995)

Abstract

We investigate the domain of coupling constants which achieve binding for

a 3-body system, while none of the 2-body subsystems is bound. We derive

some general properties of the shape of the domain, and rigorous upper bounds

on its size, using a Hall{Post decomposition of the Hamiltonian. Numerical

illustrations are provided in the case of a Yukawa potential, using a simple

variational method.
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I. INTRODUCTION

In 3-dimensional quantum mechanics, attractive short-range potentials do not always

produce bound states. For given constituent masses, a minimal strength is required. Equiv-

alently, particles should be heavy enough to experience binding in a given potential.

More interesting perhaps is the observation that 3-body systems can be bound by pairwise

potentials which are not attractive enough to bind the corresponding 2-body subsystems.

In this paper, we follow Ref. [1] and call such a 3-body system a \Borromean state", after

the Borromean rings, which are interlaced in such a subtle topological way, that if any of

them is removed, the other two would be unlocked.

Some Borromean systems have been known for several years in nuclear physics. For

instance, 6He is stable against spontaneous dissociation, while 5He is unstable. If one neglects

the internal structure of the � (= 4He) particle, a fairly honest approximation, 6He is a bound

(�� n�n) system, while neither (��n) nor (n� n) is bound. Thus 6He is Borromean. In

atomic physics, Borromean or nearly-Borromean states are also expected, as the potential

between neutral atoms has attractive parts, but remains weak, so that many 2-atom systems

are unbound or very weakly bound. For instance, E�mov [3] pointed out that some models

for the 4He{4He interaction have an unbound (4He)2 dimer and a bound (4He)3 trimer.
There are also N -body Borromean states with N > 3, whose all N 0-body subsystems,

N 0 < N , are unbound. One �nds even more complicated situations, with for instance
(N � 1)-body subsystems unstable, and some (N � 2)-body ones stable. An example is 8He
considered as a (� � n � n � n � n) system, as 6He is stable and 7He is not.

There are at least two well-known and extensively-studied quantum phenomena support-
ing the idea that 3-body systems might be more easily bound than the 2-body ones: the
E�mov e�ect and the Thomas collapse.

The E�mov e�ect [4] occurs for a coupling constant close to that giving a zero-energy
2-body bound state, or, say, an in�nite scattering length. Many loosely bound 3-body states

exist in this limit. Recent papers have proposed new derivations of the E�mov e�ect, or
new points of view for its understanding [5].

The Thomas collapse [6] is the observation that when the range of the potential decreases,
the ratio E3=E2 of 3-body to 2-body ground-state energies becomes very large. This means
there is much more binding per particle in the 3-body than in the 2-body system. It is
remarkable that Thomas was able to set a limit on the the range of nuclear forces, as early

as in 1935, by comparing the energies of 3-nucleon and 2-nucleon bound states.
Our aim is to investigate the domain of coupling constants which produce Borromean

systems. If one considers for instance a Yukawa potential, the critical coupling g3 to bind

three identical particles is by around 20% smaller than the coupling g2 necessary to bind
two particles. The question is whether g3=g2 can be made very small by suitable tuning

of the shape of the potential. We shall see that g3=g2 cannot be made smaller than 2/3.
In less symmetric situations where we are dealing with two or three coupling constants, we

shall �nd upper bounds on the domain for Borromean binding. Our study is somewhat
complementary to papers on the E�mov e�ect, showing the richness of the 3-body spectrum

near g = g2 [4,5], or looking at the ground-state energy for g = g2 [7]: we wish to determine

how far one can bind below g2.

This paper is organized as follows. Sec. II contains brief reminders on the 2-body case.
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In Sec. III, we derive bounds on the size of the domain of coupling constants for Borromean

binding, and some convexity properties of this domain. In Sec. IV are presented numerical

results obtained by a variational calculation applied to Yukawa potentials. A few general-

izations are proposed in Sec. V, as well as some related problems. Some of the results were

already presented in Ref. [8], and are repeated here with more details. A brief summary is

provided in Sec. VI.

II. BINDING 2-BODY SYSTEMS

Let us consider two particles of masses m1 and m2 interacting through a translation

invariant potential V , which will be usually of the type V (r), where r = j~rj = j~r1 � ~r2j,
though the local character is not always required. We are interested in the translation-

invariant part of the Hamiltonian,

~H2(�; g) =
~p2

�
+ gV; (2.1)

where the relative momentum ~p is conjugate of ~r, and � twice the reduced mass. Even if
the potential has attractive parts (V < 0), binding is not always achieved. A minimal value
is often required for the strength g

�g � g2 : (2.2)

Exceptions include potentials with a slow asymptotic decrease, like the Coulomb potential
[9]. From now on, we shall restrict ourselves to potentials which vanish very rapidly at large
separation, so that Eq. (2.2) holds with a �nite value of g2. Consider for instance, a Yukawa

potential: one can �x the range and the reduced mass by rescaling, and restrict oneself to
V = � exp(�r)=r in the case where � = 1. A simple argument by Dyson and Lenard [10]
shows that g2 >

p
2. The value of g2 is available in the literature [11,12], g2 ' 1:6798.

Within variational methods, it is not exactly the same art to compute the ground state
E2 with high accuracy in a regime g > g2 where stability is ensured, and to compute very

precisely the coupling g2 where E2 = 0; see, for instance, Ref. [12]. The di�culty comes
from the slow onset of the amount of binding near g2 [13], of the type

E2(g) / �(g � g2)
2 : (2.3)

To estimate g2, one can also integrate numerically the radial equation for S-states at

energy E2 = 0, using for instance the algorithm proposed by Hartree [14], and look at which
coupling g = g2 the radial wave function starts exhibiting a node at large distances. Great

accuracy can be obtained, as one can check with potentials for which exact results are known

[15].

III. GENERAL PROPERTIES OF THE DOMAIN OF STABILITY

A. Symmetric case

Let us consider the simplest case of three identical bosons with a mass set to m = 1 to

�x the scale. As a �rst example, we take a Yukawa potential �gPi<j exp(�rij)=rij, with
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rij = j~ri �~rj j. With standard numerical methods, on which more later, one can calculate

the critical coupling g3 for three-body binding. One �nds g3=g2 ' 0:804, i.e., a 20% window

for Borromean binding. If one repeats the computation of this ratio of critical couplings

with other simple potentials, one gets comparable results, for instance g3=g2 ' 0:801 for an

exponential V = � exp(�r), 0:794 for a Gaussian V = � exp(�r2), and 0.806 for a Hulthen

potential V = �1=(exp(r) � 1) [16]. Such quasi-universality was already noticed in [17],

where the 3-body ground-state energy was plotted against the 2-body scattering length. It

is not too surprising, as in the weak-binding limit we are dealing with, most of the wave

function lies outside the potential well, which is not very much probed.

One might however address the question whether changing drastically the shape of V (r)

could result into much smaller or much larger values of g3=g2.

Potentials with a large repulsive core, such as the Morse interaction with a minimum

located at large distance, could lead to g3=g2 larger than 0:8. This is currently under study

and will be reported elsewhere [18].

On the other hand, one can show that g3=g2 is bounded below, namely

g3

g2
� 2

3
: (3.1)

This inequality is nearly saturated for a modi�ed harmonic oscillator, which is V (r) = V0+r
2,

V0 < 0 at short distances, and cut o� at very large r so that V ! 0.
The proof consists of a simple modi�cation of the Hall{Post inequalities [19] which relate

3-body to 2-body energies at �xed coupling, providing a simple lower bound for the former.
In the course of studies on the stability of matter or on the quark model, a weaker version has
been proposed [10,20,21], where the energy of the centre-of-mass motion was not properly
removed. The optimal form of this inequality, with saturation in the case of harmonic forces,
was recently rediscovered [22], applied to a comparison of meson and baryon masses in the
quark model [23], and generalized to the case of unequal constituent masses [24].

From the 3-boson Hamiltonian

H3 =
3X
i=1

~p2i
2m

+ g
X
i<j

V (rij)

=
(
P
~pi)

2

6m
+ eH3 ; (3.2)

one extracts a translation-invariant part eH3 which can be written as

eH3 =
X
i<j

2

3m

 
~pi � ~pj

2

!
2

+ gV (rij); (3.3)

to exhibit momenta which are canonical conjugate to the relative distances ~ri�~rj. In short,

eH3(m; g) =
X
i<j

eH(ij)

2
(3m=2; g) =

2

3

X
i<j

eH (ij)

2
(m; 3g=2): (3.4)

If one saturates the above operator identity with the ground eigenstate of eH3, and apply
the variational principle to the matrix elements of eH2, in a regime of given coupling g (large

enough, so that every Hamiltonian binds), one gets
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E3(m; g) � 3E2(3m=2; g) = 2E2(m; 3g=2); (3.5)

which is the simplest form of the Hall{Post inequality [19,22].

By a similar reasoning, one would never get a 3-body bound state, corresponding to

h eH3i < 0 with the appropriate wave function, as long as the sub-Hamiltonians do not bind,

i.e., h eH2i > 0 for any state. Thus 3g=2 � g2 is required, q.e.d.

B. Partially symmetric case

We now assume that only particles 1 and 2 are identical. The Hamiltonian is of the form

H3 =
~p2
1

2
+
~p2
2

2
+

~p2
3

2M
+ g

1 +M

2M
(V23 + V31) + g0v12; (3.6)

where the potentials v12 and Vij are attractive, and of short range. The potential functions

V and v need not being identical. The normalization is chosen such that m1 = m2 = 1,

g0 = 1 for the critical binding to bind (1,2), and also g = 1, the critical coupling to bind

masses (1;M) with potential V . The domain for Borromean binding is thus to be found
inside the unit square (g � 1; g0 � 1), as schematically pictured in Fig. 1.

The inner part is the region of no binding, where the minimum of the Hamiltonian is

min[H3] = 0, i.e., the beginning of the continuum. Since the coupling constants enter the
Hamiltonian linearly, if one considers two points P (g; g0) and ~P (~g; ~g0) in the no-binding
region, and an intermediate point Q = �P + (1� �) ~P , with 0 � � � 1, then

H3(Q) = �H3(P ) + (1� �)H3( ~P ); (3.7)

and [25]

min [H3(Q)] � �min [H3(P )] + (1� �)min
h
H3( ~P )

i
= 0: (3.8)

This means the instability region is a convex domain.
The region of binding cannot extend up to the g = 0 axis, as a bound (1,2) pair needs a

minimum of attraction to remain linked to the third particle.
The behaviour of the frontier of stability near the g0 = 0 axis, where particles 1 and 2

only interact with 3, depends on the value of M . In the case of an in�nitely heavy nucleus
M = 1, one strictly needs g � 1, with our normalization. Hence the frontier ends at the

lower corner (g = 1; g0 = 0) of the unit square. For a �nite-mass nucleus (M < 1), the

frontier might end at some point (g0; 0) with g0 < 1. An heuristic argument is the following.
If particle 1 is assumed to be bound to 3, then particle 2 interacts with a kernel of mass

(1 +M), to which binding is easier than with M alone. Now 2 linked to 3 is heavier than
3 alone, and this might justify the hypothesis that 1 is bound. Whether or not g0 < 1 is

related to the discussion on the sign of the correction to the ground-state energy of Helium

due to the motion of the nucleus. Using explicitly ~p3 = �~p1 � ~p2, the g
0 = 0 case reads

[25,26]

H3 =

�
1

2
+

1

2M

� X
i=1;2

h
~p2i + gVi;3

i
+

1

M
~p1 �~p2 : (3.9)
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Without the Hughes{Eckart term, one gets a simple factorizable solution, and stability

requires g � 1. The Hughes{Eckart term is repulsive for the ground state of the He atom,

due to the anticorrelation between the electrons [25,26] . Here, the analog of the electrostatic

repulsion between the electrons vanishes (g0 = 0), and the Hughes{Eckart term tends to

become attractive, to provide some stability for g < 1.

We now derive an upper bound on the size of the domain of stability. The strategy is

the same as in the symmetric case: we split the Hamiltonian into simple pieces, and look

at whether the sub-Hamiltonians can reach negative values. To show that too simple a

decomposition of the Hamiltonian is not su�cient to provide a satisfactory bound, let us

consider two examples. The �rst one is the case M =1 [8]. A simple decomposition is

2H3 =
h
�~p2

1
+ gV (r1)

i
+
h
�~p2

2
+ gV (r2)

i
+
h
(1� �)

�
~p2
1
+ ~p2

2

�
+ g0v(r12)

i
; (3.10)

for any 0 � � � 1. To get hH3i < 0, one needs at least one of the square brackets having

a negative expectation value. This excludes the triangle fg � �; g0 � (1 � �)g, shown in

Fig. 2. However, we are touching the g = 0 axis, and do not get a strictly convex domain.

Another example is the equal-mass case M = m. One can still use the decomposition

(3.3) of the symmetric case, rewritten as

H3 =
(~p1 + ~p2 + ~p3)

2

6
+
X
i=1;2

2
42
3

 
~pi � ~p3

2

!2

+ gVi3

3
5+

2
42
3

 
~p1 � ~p2

2

!2

+ g0v12

3
5 : (3.11)

Clearly, H3 would never reach negative expectation values as long as each bracket remain
positive. The inner square domain

g � 2

3
; g0 � 2

3
(3.12)

is thus excluded (see Fig. 3). Again, this bound is rather crude, since it does not exclude
some points on the g = 0 axis, and the actual frontier is not expected to be a at function

of g or g0.
We thus have to look at a more general decomposition of the Hamiltonian. For arbitrary

mass M , we rewrite (3.6) in the form [24]

H3 = (~p1 + ~p2 + ~p3) � (b~p1 + b~p2 + b0~p3)

+
X
i=1;2

2
4a
 
~pi � x~p3

1 + x

!2

+ g
1 +M

2M
Vi3

3
5+

2
4a0

 
~p1 � ~p2

2

!2

+ g0v12

3
5 : (3.13)

The momenta in the sub-Hamiltonians are normalized to be conjugate to the relative dis-

tances ~ri �~rj. Note that the �rst term might di�er from the kinetic energy of the c.o.m.
motion, but still vanishes for the ground state of H3. For any given x � 0, one can identify

(3.13) with the original Hamiltonian (3.6), and calculate a and a0 as functions of x (one can
also calculate b and b0, but their values are irrelevant). One gets

a =

�
1 + x

1 + 2x

�2 �1
2
+

1

M

�

a0 =
4

(1 + 2x)2

�
x(1 + x)� 1

2M

�
: (3.14)
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From (3.13), H3 will not bind as long as g(1 +M)=(2M) � a and g0 � a0. This gives an

improved lower limit for the frontier of stability, which one can write as

g =
M + 2

4(M + 1)
(1 + t)2

g0 = 1 � M + 2

M
t2 : (3.15)

after a suitable change of variable. This is an arc of parabola. The domain of variation is

�rst 0 � x <1 when writing (3.13), corresponding to 0 � t � 1, but it is further restricted

by the requirement that the inverse masses a and a0 should be positive.

The M =1 case is shown in Fig. 2. It excludes the low g part (g < 1=4), and exhibits

the appropriate convexity. The lower bound for M = 1 is displayed in Fig. 3. It ends at

g0 = 0 and g = 1=2 +
p
3=4 ' 0:933, leaving at most a 7% margin for Borromean binding

when the interaction v12 is switched o�.

One notices an horizontal behavior when reaching the g0 = 1 threshold, and the slope

dg0=dg = �2 on the symmetry axis g = g0, in the case where M = 1. The same slope

should be observed for the actual frontier in the case of equal masses (M = 1) and identical
potentials (V = v), since one can split the Hamiltonian into

H =
X
i

~p2i
2
+
2g + g0

3
(V12 + V23 + V31) +

g � g0

3
(V23 + V31 � 2V12) ; (3.16)

so that the last term, of mixed permutation symmetry, contributes at second order only

when treated in perturbation about the symmetric term. Hence the energy is mostly a
function of (2g + g0), and the frontier has a slope �2 near g = g0.

C. General case

The generalization to three di�erent couplings h, g, and k is rather straightforward, so

we shall be rather brief here, and mostly give the results. The Hamiltonian is

H3 =
~p2
1

2m1

+
~p2
2

2m2

+
~p2
3

2m3

+
g

m23

u23 +
h

m31

v31 +
k

m12

w12; (3.17)

where mij = 2mimj=(mi + mj) is twice the reduced mass, so that g = 1 is the critical
coupling for binding m2 and m3 in potential u, and similarly for h and k.

The domain of Borromean binding is thus restricted inside the unit cube (g � 1; h �
1; k � 1). Its complement, the domain of no-binding, is convex.

The frontier has of course some symmetries if the masses are equal, and the potential

terms u, v and w have identical functional dependence. For instance, its normal vector is

parallel to (1,1,1) at the point where g = h = k.
The Hamiltonian (3.17) can be split into [24]

H3 = (~p1 + ~p2 + ~p3) � (b1~p1 + b2~p2 + b3~p3)

+

2
4a3

 
~p1 � x3~p2

1 + x3

!
2

+
k

m12

v12

3
5+ : : : ; (3.18)
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where the inverse masses are given by

a3 =
(1 + x3)

2

2

x1(1 + x2)=m2 + (1 + x1)=m1 � x2=m3

(1 + x1 + x3x1)(1 + x3 + x2x3)
; (3.19)

and circular permutations. The inverse mass a3 is of course invariant under simultaneous

m1 $ m2, x1 $ x�1

2 and x3 $ x�1

3 exchanges. From (3.19), the ground state of H3 ful�lls

E3(H3) � E2

�
a1;

g

m23

u23

�
+ � � � ; (3.20)

with obvious notations. Any optimization of the r.h.s. of the above inequality leads to

equations of the type

3X
i=1

dE2(ai)

dai

@ai

@xj
= 0; (3.21)

which cannot be satisfactorily ful�lled unless the Jacobian determinant det(@ai=@xj) van-

ishes, i.e.,

x1x2x3 = 1; (3.22)

as shown in [24]. We shall always keep this condition satis�ed.
The frontier of stability is bounded below by the surface

g = m23a1(x1; x2; x3); h = m31a2; k = m12a3: (3.23)

This limiting surface is shown in Fig. 4, in the case of equal masses mi = 1. This particular
choice provides the surface with symmetries. The largest departure from the cube occurs
on the symmetry axis, where g = h = k. The wave function can be written in three possible

ways as a product of a 2-body cluster times a third particle, schematically 	 =
P
�k[(i; j); k].

On the symmetry axis, all [(i; j); k] components are degenerate in energy. They can thus
experience sizeable constructive interferences, which lower the energy of 	.

IV. NUMERICAL RESULTS

To illustrate how likely is the occurrence of Borromean binding, and how realistic are

the lower bounds derived in the previous section, we have explicitly computed the stability

frontier for a Yukawa potential.
To cross-check the computation, several methods of solving the 3-body problem, have

been used. As the comparison of the numerical results is a little tedious, it will be restricted
to the symmetric case.

A. Methods

We consider here three identical bosons, with massmi = 1, interacting through a pairwise

local potential g
P

i<j v(rij). In the case of a Yukawa interaction, v(r) = � exp(�r)=r, some
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numerical results obtained with di�erent methods are shown in Table I. These are some

binding energies for given coupling g > g3, and estimates of the critical coupling g3.

The methods used in these Tables are:

1. The hyperscalar approximation. The wave function is restricted to be of the type 	 =

 (R)=R5=2, where R2 = 2(
P

i<j r
2

ij)=3, resulting into the 2-body-like radial equation

 00(R)� 15

4R2
 (R) + [E � gV0(R)] (R) = 0; (4.1)

where

V0(R) =
48

�

Z �=2

0

sin2 ' cos2 'v(R sin')d'; (4.2)

This is the �rst step of a more systematic expansion into generalized partial waves [27]. The

method can be adapted to the case of unequal masses.

2. The Feshbach{Rubinow method [28] is rather similar, except that R = (
P

i<j rij)=2, and

E ! 15E=14 in the radial equation (4.1). The projection of the potential now reads

V0(R) =
24

R5

Z R

0

h
R2x2 �Rx3 + x4=6

i
v(x)dx; (4.3)

It can be generalized to unequal masses; see, for instance [7].

3. A Gaussian expansion. If ~� and ~� are two Jacobi coordinates describing the relative

motion (the speci�c choice does not matter), the wave function is searched as

	 =
GX
i=1

ki
h
exp�(a11~� 2 + a22~�

2 + 2a12~��~�) + � � �
i
; (4.4)

where the dots mean (in general) 5 terms deduced by permutation, to make each bracket
explicitly symmetric. The parameters are optimized numerically. This method can be
generalized to unequal masses, more than 3 particles, etc., and is widely used in quantum
chemistry [29], nuclear physics [30], etc.

4. An expansion in terms of exponentials on the distances, namely

	 =
GX
i=1

ki [exp�(air23 + bir31 + cir12) + � � �] ; (4.5)

with a similar symmetrization within each bracket. This method is more accurate, as it

better accounts for the long-range behavior. It was used in several pioneering paper on
few-body systems in atomic physics [31]. It also works for unequal masses. However, with
more than N = 3 particles, its use becomes rather di�cult. Detailed investigations of the

convergence properties for those 3-body calculations will be reported elsewhere [32].

5. The Faddeev method in coordinate space [27], restricted to the lowest (l = 0) angular

momentum for the pairs in the sub-amplitudes.

Comments are in order.
i) The Feshbach{Rubinow method works better than the hyperscalar approximation, for

these short-range potentials. A similar conclusion was reached in [33]. This contrasts with
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the case of the con�ning potentials one uses in simple quark models of baryon. For instance,

with a pairwise linear potential v(r) = r replacing our Yukawa, one would obtain a ground-

state energy E = 6:2089 with Feshbach{Rubinow, which is worse than the E = 6:1348 [27]

of the hyperscalar approximation1.

ii) The Gaussian expansion requires many terms (G large) to become e�cient. with just a

few terms, as in the G = 4 case shown here, it is largely superseded by the exponential type

of expansion.

iii) The Faddeev method is rather e�cient in this weak-binding regime, as it incorporates a

minimal amount of 2-body correlations in its wave function.

B. Results

The numerical calculations have been carried out using the variational expansion into

exponentials, with G = 4 terms, and some explicit symmetrization in particular cases where

some masses and couplings are equal.

The results presented below correspond to rescaled distances and couplings. Namely, we

rewrite the Hamiltonian

H =
X
i

~P2

i

2Mi

�
X
i<j

Gij

e�Rij=Ro

Rij

=
�h2

M1R2
o

2
4X

i

~p2i
2mi

�
X
i<j

gij

mij

(g2
e�rij

rij
)

3
5 (4.6)

so that, within the bracket, �h = m1 = 1, and gij = 1 is the critical coupling to bind a (i; j)

pair of reduced mass mij=2. The correspondence is gij =M1Romij=(�h
2g2), with g2 = 1:6798.

In the case where particles 1 and 2 are identical, corresponding to the Hamiltonian
(3.6), we obtain the frontier shown in Fig. 5 for and in�nite third mass M , and Fig. 6 for
M = 1, where a comparison is done with the rigorous limit. Typically, the domain of actual
Borromean states covers around 2/3 of the area allowed by the rigorous bounds. Other

investigations have shown that the curves corresponding to exponential, Gaussian or similar
potentials are almost identical to those ones [32].

Fig. 7 corresponds to three equal-mass particles, but with di�erent couplings between
them. It has to be compared with the lower bound shown in Fig. 4. As we have not pushed
very far the variational computation, this surface should be considered somewhat as an

upper bound, the actual frontier lying perhaps a little inside.
The window for Borromean binding can be measured by the distance from this frontier

surface to the unit cube. The largest window occurs in the symmetric case g = h = k. In

this case, the three possible decompositions of the wave function into a 2-body cluster and
a particle are degenerate, and thus interfere maximally.

1The hyperscalar approximation is exact if the total potential energy is a function of
P
r2ij, but

the Feshbach{Rubinow method remains an approximation for a total potential V =
P
rij or a

function of
P
rij.
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V. GENERALIZATIONS AND RELATED PROBLEMS

Most of the numerical illustrations, in the previous section, deal with equal masses. The

inuence of the masses deserves further investigations. Consider again the case where two

particles are identical. A comparison of the rigorous bounds on (m;m;M) stability is done

in Fig. 8, for the M � m, M = m, and M � m cases. In the upper-right corner, the

window for Borromean binding seems larger in the M � m case. This corroborates the

hierarchy found in Ref. [7], where the binding energy at g = g0 = 1 is computed for several

values of the ratio M=m. The inuence of the ratio M=m on the 3-body spectrum was also

studied by E�mov [34] and Fonseca and Shanley [35].

For most of the investigations presented in the previous sections, in particular the vari-

ational calculations, the cases with more than N = 3 particles would require more e�orts.

However, some of the rigorous bounds can be easily generalized. Some examples are given

below.

Consider �rst the case of N identical bosons, interacting with a short-range potential. A

straightforward generalization of (3.4) to N bosons is [22]

eHN (m; g) =
1

N � 2

NX
k=1

eH [k]

N�1

�
Nm

N � 1
; g

�
(5.1)

where the superscript in eH [k]

N�1
means that the k-th particle is omitted. Saturating with the

ground state of eHN shows that stability requires [8]

gN �
N � 1

N
gN�1; (5.2)

i.e. NgN increases with N . For N = 4, a crude variational calculation [8] gives g4=g2 � 0:67
for a Yukawa potential, i.e., once g3=g2 is subtracted, at least a 13% window for a genuine
4-body Borromean state.

Another interesting situation deals with p identical bosons, of mass set to m = 1, in
the �eld of a static source. For p = 2, it corresponds to the M = 1 in subsection (IIIB),

from which we take the same notation, g for the particle{source coupling, and g0 for the
interparticle coupling, both normalized to g or g0 = 1 for 2-body binding. The following
results can be established [8]. First, all stability curves g0 = g0p(g) end at the same point
(g = 1; g0 = 0) corresponding to independent binding of each particle around the source.
Secondly, the Hamiltonians

Hp =
pX
i=1

"
~p2i
2
+ gVi

#
+
X
i<j

vij (5.3)

ful�ll the identity

Hp(g; g
0) =

pX
j=1

H
(j)
p�1(g;

p� 1

p� 2
g0); (5.4)

where H
(j)
p�1 denotes the (p� 1)-body Hamiltonian with the j-th particle being removed. By

a now familiar reasoning, binding of Hp requires that the H
(j)
p�1 have their couplings in the

stability region, i.e.,

11



g0p(g) > g0p�1

 
p � 1

p � 2
g

!
: (5.5)

Fig. 9 is a new drawing of Fig. 2, with the lower limit g0
2
for binding p = 2 particle around

a static source, and the lower bound one deduces by the a�nity (5.5) for the curve g0
3
with

p = 3 bosons. It is presumably rather crude, especially near the upper left corner where

g = 0 and g0 = 1. The decomposition (5.4) hardly accounts for the possibility of forming a

3-boson bound state, of mass m0 = 3, for some g0 < 1, and then binding this mass m0 to the

source.

Simple results can also be found for another 4-body case, with 2 identical bosons of mass

m interacting with two other identical bosons of mass M [8]2. Let us denote the couplings

gmm, gMM and gmM , all normalized to g = 1 for 2-body binding. The Hamiltonian

H4 =
X
i=1;2

~p2i
2m

+
X
j=3;4

~p2j
2M

+
gmm

m
u12 +

gMM

M
v34 + gmM

m+M

2mM

X
i;j

wij; (5.6)

can be rewritten as

H4 = (~p1 + ~p2 + ~p3 + ~p4) � (b~p1 + b~p2 + b0~p3 + b0~p4)

+a12

 
~p1 � ~p2

2

!
2

+
gmm

m
u12 + a34

 
~p3 � ~p4

2

!
2

+
gMM

M
v34

+
X
i;j

�a[�~pi � (1� �)~pj ]
2 + gmM

m+M

2mM
wij (5.7)

with the inverse masses given by

a12 =
1

m
(1� �2)� 1

M
�2;

a34 = � 1

m
(1� �)2 +

1

M
�(2 � �); (5.8)

�a =
1

4m
+

1

4M
:

This shows that H4 cannot support a bound state if simultaneously

gmm � 1 � �2 � (m=M)�2;

gMM � �(M=m)(1 � �)2 + �(2 � �); (5.9)

gmM � 1=2:

Interestingly, the condition on gmM decouples. Hence binding cannot be exclude if gmM >

1=2. If gmM < 1=2, then gmm; gMM should lie outside the parabola shown if Fig. 10. To
get a genuine Borromean state, one should exclude 3-body binding. If we replace the actual

stability frontier for (mmM) or (MMm) by the bound (3.15), then we get a strict upper

2A slight error in the drawing of Fig. 2 of that reference and in its caption are corrected below.
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bound on the size of domain for a 4-body Borromean system. This is shown in the second

part of Fig. 10. The oor of the volume is either the gmM = 1=2 limit, or gmM = 0 if gmm and

gMM are large enough, i.e., outside the parabola. The ceiling is the lowest of the parabolic

cylinders related to the stability of (mmM) and (MMm).

Finally, there are many related problems. Let us mention one of them, which was

discovered in the course of our investigations, and while reading Ref. [36]. Consider for

instance our curve in Fig. 11. When it crosses the line g0 = 1, it continues in the (g < 1; g0 >

1) region, and becomes a separation between a region on the left where only the (1,2) pair

is bound, and a region on the right where 3-body bound states also occur. We have seen

that the line is convex inside the unit square (unlike the schematic drawing in Ref. [36] ).

Above this square, it tends to a vertical straight line g = 3=8, corresponding to particle 3

interacting with a point (1,2) object. (Remember the normalization: g > 1 is required to

bind a reduced mass 1/2 in a potential v. Then binding a reduced mass 2=3 in a potential

2v requires g > 3=8.)

The way of approaching this g = 3=8 limit can be studied using a variational wave

function of the type

	 =  1S(r)�(R) (5.10)

with r = j~r1 �~r2j, and R is the separation between particle 3 and the c.o.m. of (1,2). The

e�ective potential governing �(R) results from a simple integral over the (1,2) distribution.
The value 2v(R) in the limit where (1,2) is point-like, receives an attractive correction if
�v < 0 at large distances, where � is the Laplacian operator. This corresponds to the
dotted line in the schematic drawing in Fig. 11. It means for some potentials, that there is
perhaps an absolute minimum gmin < 3=8 for the coupling constant g to get 3-body binding,

and that this minimum is reached at some �nite value of g0. Drawing with precision all
separation curves in the whole (g; g0) domain, and studying their curvature properties would
be of interest. There are certainly many exciting e�ects to be unraveled in the transition
from separate clusters to collective binding.

VI. SUMMARY

In this paper, we have discussed the properties of the domain of coupling constants which
bound a 3-body system but leave all 2-body subsystems (1; 2), (2,3) and (3,1) unbound. A

lower limit on these coupling constants is obtained from a variant of the Hall{Post inequali-

ties, i.e., from a systematic decomposition of the (1,2,3) Hamiltonian in 2-body Hamiltonians.

This lower limit appears a simple consequence of the variational principle, and is indepen-
dant of the shape of the potential, once the coupling constants are properly normalized.

In the case of identical bosons, the critical couplings g3 for the 3-body binding and g2 for
2-body binding are such that their ratio g3=g2 cannot be less than 2/3.

An upper limit, and approximate estimate, of this domain can be computed with vari-
ational methods for each speci�c interaction. This is done here in the case of a Yukawa

potential. There is typically a 20% window on the value of the coupling constants for bind-

ing the (1,2,3) system without 2-body binding. For instance, g3=g2 ' 0:804 for identical
bosons.
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Some of our rigourous results can be generalized to situations involving more than three

particles, but the corresponding numerical estimates remain to be done. The case of identical

fermions with attractive interaction would also require new investigations.
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TABLES

TABLE I. Ground-state energy E at given coupling g, and minimal coupling g3 required to

achieve binding, for a symmetric 3-body system of constituent massesmi = 1 interacting through a

Yukawa potential of range set to unity. The values are computed with di�erent methods described

in the text. For the Gaussian or exponential expansion, we use G = 4 terms.

Method E(g = 1:7) E(g = 1:8) g3

Hyperscalar �0:1141 �0:2008 1:491

Feshbach{Rubinow �0:1841 �0:2851 1:390

Gaussian expansion �0:1785 �0:2780 1:398

Exponential expansion �0:1894 �0:2897 1:362

Faddeev l = 0 �0:1893 �0:2823 1:365

17



List of Figures

1 Expected shape for the domain of Borromean binding inside the unit square

of normalized coupling constants (g � 1; g0 � 1). : : : : : : : : : : : : : : : : 18

2 Lower bound for the frontier of Borromean stability, for particules with masses

(1; 1;1). The coupling constants are normalized so that g0 = 1 is required

to bind particles 1 and 2 together and g = 1 to bind 1 or 2 around the static

centre. The dotted line comes from the simple decomposition (3.10 ) of the

Hamiltonian, the solid curve from Eq. (3.15 ). : : : : : : : : : : : : : : : : : 18

3 Lower bound for the frontier of Borromean stability, for particles with unit

masses, and coupling constant g for the (1,3) and (2,3) interaction, and g for

(1,2) one, normalized so that g = 1 or g0 = 1 is the threshold for 2-body

binding. The dotted square comes from the simple decomposition (3.11 ) of

the Hamiltonian, the solid curve from Eq. (3.15 ). : : : : : : : : : : : : : : : 19

4 Lower limit for the normalized coupling constants g, h and k to form a Bor-

romean bound state. The �gure corresponds to equal masses. : : : : : : : : : 19

5 Numerical estimate, in the space of normalized coupling constants g and g0,

of the frontier to form a Borromean bound state. The particles, of masses
m1 = m2 = 1, m3 = 1, interact through a Yukawa potential. The dotted
line is the rigourous lower limit. : : : : : : : : : : : : : : : : : : : : : : : : : 20

6 Numerical estimate, in the space of normalized coupling constants g and g0,
of the frontier to form a Borromean bound state. The particles have equal

masses and interact through a Yukawa potential. The dotted line is the
rigourous lower limit. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

7 Numerical estimate, in the space of normalized coupling constants g, h and
k, of the frontier to form a Borromean bound state. The plot shown here
corresponds to equal masses interacting through a Yukawa interaction. The

second �gure is a tentative comparison of this frontier with the rigorous lower
limit. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

8 Comparison of the maximal extension of the Borromean domain for a 3-body
systems of masses (m;m;M), in the cases M � m (dotted line), M = m

(solid line), and M � m (vertical straight line). : : : : : : : : : : : : : : : : 22
9 Limit on the frontier of stability, for p = 3 bosons around a �xed centre, as

deduced by Eq. (5.5 ) for the frontier of p = 2 bosons, shown as a dotted line. 22
10 Mixed limits on normalized coupling constants gmm, gMM and gmM to form

a 4-body Borromean state (m;m;M;M). If gmM > 1=2, binding cannot be

excluded. If gmM < 1=2, gmm and gMM should not correspond to a point
inside the parabola. A value M=m = 2 is assumed here for the drawing. The

3-dimensional plot shows this lower limit on gmM , and also a lower bound to
the maximal value of gmM : the intersecting cylinders are the lower bounds on

gmM for binding (m;m;M) or (M;M;m). : : : : : : : : : : : : : : : : : : : 23

18



11 Tentative extrapolation of the stability curve outside the unit square g �
1; g0 � 1. The upper part separates the region where only (1,2) binding

is permitted from the region where a 3-body bound state also exists. The

vertical line corresponds to the limit where the (1,2) pair form a point-like

cluster. The solid and dotted lines are two possible approaches to this limit. 24

19



FIGURES

0

1

0 1

g0

g

No binding

Halo

FIG. 1. Expected shape for the domain of Borromean binding inside the unit square of nor-

malized coupling constants (g � 1; g0
� 1).
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FIG. 2. Lower bound for the frontier of Borromean stability, for particules with masses (1; 1;1).

The coupling constants are normalized so that g0 = 1 is required to bind particles 1 and 2 together

and g = 1 to bind 1 or 2 around the static centre. The dotted line comes from the simple

decomposition (3.10) of the Hamiltonian, the solid curve from Eq. (3.15).
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FIG. 3. Lower bound for the frontier of Borromean stability, for particles with unit masses,

and coupling constant g for the (1,3) and (2,3) interaction, and g for (1,2) one, normalized so that

g = 1 or g0 = 1 is the threshold for 2-body binding. The dotted square comes from the simple

decomposition (3.11) of the Hamiltonian, the solid curve from Eq. (3.15).
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FIG. 4. Lower limit for the normalized coupling constants g, h and k to form a Borromean

bound state. The �gure corresponds to equal masses.
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FIG. 5. Numerical estimate, in the space of normalized coupling constants g and g0, of the

frontier to form a Borromean bound state. The particles, of masses m1 = m2 = 1, m3 = 1,

interact through a Yukawa potential. The dotted line is the rigourous lower limit.
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FIG. 6. Numerical estimate, in the space of normalized coupling constants g and g0, of the

frontier to form a Borromean bound state. The particles have equal masses and interact through

a Yukawa potential. The dotted line is the rigourous lower limit.
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FIG. 7. Numerical estimate, in the space of normalized coupling constants g, h and k, of the

frontier to form a Borromean bound state. The plot shown here corresponds to equal masses

interacting through a Yukawa interaction. The second �gure is a tentative comparison of this

frontier with the rigorous lower limit.
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FIG. 8. Comparison of the maximal extension of the Borromean domain for a 3-body systems

of masses (m;m;M), in the cases M � m (dotted line), M = m (solid line), and M � m (vertical

straight line).
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FIG. 9. Limit on the frontier of stability, for p = 3 bosons around a �xed centre, as deduced

by Eq. (5.5) for the frontier of p = 2 bosons, shown as a dotted line.
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FIG. 10. Mixed limits on normalized coupling constants gmm, gMM and gmM to form a 4-body

Borromean state (m;m;M;M). If gmM > 1=2, binding cannot be excluded. If gmM < 1=2, gmm
and gMM should not correspond to a point inside the parabola. A value M=m = 2 is assumed here

for the drawing. The 3-dimensional plot shows this lower limit on gmM , and also a lower bound

to the maximal value of gmM : the intersecting cylinders are the lower bounds on gmM for binding

(m;m;M) or (M;M;m).
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FIG. 11. Tentative extrapolation of the stability curve outside the unit square g � 1; g0
� 1.

The upper part separates the region where only (1,2) binding is permitted from the region where

a 3-body bound state also exists. The vertical line corresponds to the limit where the (1,2) pair

form a point-like cluster. The solid and dotted lines are two possible approaches to this limit.
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