
 

 

Cluster Monte Carlo and dynamical 
scaling for long-range interactions 
 
Flores-Sola, E, Weigel, M, Kenna, R & Berche, B 
 
Author post-print (accepted) deposited by Coventry University’s Repository 
 
Original citation & hyperlink:  
Flores-Sola, E, Weigel, M, Kenna, R & Berche, B 2017, 'Cluster Monte Carlo and dynamical 
scaling for long-range interactions' The European Physical Journal Special Topics, vol 226, no. 
4, pp. 581 - 594  

https://dx.doi.org/10.1140/epjst/e2016-60338-3  
 
DOI 10.1140/epjst/e2016-60338-3 
ISSN 1951-6355 
ESSN 1951-6401 
 
Publisher: Springer 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  
 
This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it.  
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228149486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dx.doi.org/10.1140/epjst/e2016-60338-3


EPJ manuscript No.
(will be inserted by the editor)

Cluster Monte Carlo and dynamical scaling for
long-range interactions

E. Flores-Sola1,2,3, M. Weigel1,3,a, R. Kenna1,3, and B. Berche2,3

1 Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB, United
Kingdom

2 Institut Jean Lamour, CNRS/UMR 7198, Groupe de Physique Statistique, Université de
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Abstract Many spin systems affected by critical slowing down can
be efficiently simulated using cluster algorithms. Where such systems
have long-range interactions, suitable formulations can additionally
bring down the computational effort for each update from O(N2) to
O(N lnN) or even O(N), thus promising an even more dramatic com-
putational speed-up. Here, we review the available algorithms and pro-
pose a new and particularly efficient single-cluster variant. The effi-
ciency and dynamical scaling of the available algorithms are investi-
gated for the Ising model with power-law decaying interactions.

1 Introduction

The theory of phase transitions and critical phenomena is by now rather well un-
derstood, although there remain a significant number of questions that are still very
actively debated and some of which are not finally settled, ranging from the theory
of disordered systems [1, 2] to quite fundamental problems such as certain aspects
of finite-size scaling [3, 4]. The theoretical basis of this success is the concept of
the renormalization group [5] that allows one to understand scaling and universality
in such systems. While this theory provides the essential scaffolding for describing
continuous phase transitions, and many results have been derived from it via per-
turbative approaches such as the ε expansion, the field is now hardly conceivable
without contributions from numerical techniques such as the molecular dynamics [6]
and Monte Carlo methods [7]. While the basic techniques such as, e.g., the Metropo-
lis algorithm [8] for simulations of spin systems, are rather easily implemented, using
them for studies of critical points is not straightforward as there the simulational and
the physical dynamics are affected by critical slowing down due to the proliferation
of spatial correlations as the critical point is approached. An effective antidote for
this problem is available in the form of cluster algorithms as originally proposed for
the short-range Ising model [9, 10] and later generalized to a range of different spin
models and certain off-lattice systems [11]. They manage to substantially reduce or,
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in some cases, practically eliminate critical slowing down through the identification
and updating of large-scale, fractal structures whose extent diverges as the critical
point is approached. A related class of algorithms even achieve critical speeding up, an
increase of computational efficiency with system size, for certain quantities [12, 13].

While the electromagnetic force as the basic agent in condensed-matter systems
decays slowly, proportional to the inverse square of the distance, due to screening
effects short-range intermolecular interactions such as those parameterized in the
Lennard-Jones potential dominate in many cases. In some systems, however, such as
in frustrated magnets [14] or in certain lattices of cold atoms [15], long-range inter-
actions are responsible for the presence or absence of ordering. The effect of such
interactions on the nature of the transition was studied early on in the framework
of the renormalization group [16]. Apart from describing experimentally relevant sys-
tems with long-range interactions, these models were also soon recognized as pathways
for introducing non-trivial critical behavior into systems whose physical dimension is
too low to exhibit such ordering for short-range couplings [17, 18]. While both local
and cluster-update Monte Carlo simulation algorithms are directly applicable to sys-
tems with long-range interactions, the fact that each particle or spin interacts with
all others implies an O(N2) scaling of the computational effort for the simulation
of a system of N particles. As a result, the system sizes accessible computationally
through these methods are severely restricted, typically to a few thousand spins [19].
Due to this limitation, many studies considered cut-offs to the interactions and/or
extrapolation methods to try to access ranges of system sizes where finite-size scal-
ing approaches could be meaningfully employed [20, 21]. It was realized by Luijten
and Blöte [22] that these restrictions could be lifted using a different formulation of
the cluster algorithm that allows one to update all spins once with an O(N logN)
computational effort. More recently, Fukui and Todo [23] proposed a related, slightly
more general approach with a scaling only slightly worse than linear. Below, we dis-
cuss a single-cluster variant with strictly O(N) scaling. These methods hence deliver
a twofold and very dramatic speedup: a computational acceleration from O(N2) to
O(N) operations per sweep and, in addition, a reduction of critical slowing down in
the vicinity of the critical point.

The rest of the paper is organized as follows. In Sec. 2 we give a short summary
of the Swendsen-Wang algorithm to set the stage for the improved methods. Sections
3 and 4 discuss the Luijten-Blöte and Fukui-Todo approaches, respectively, includ-
ing the single-cluster variant introduced here. The computational and algorithmic
performance is discussed in Sec. 5. Finally, Sec. 6 contains our conclusions.

2 Swendsen-Wang algorithm

Although the algorithms discussed below can be generalized to the case of Potts and
even continuous-spin models, for the sake of simplicity we restrict our presentation
to the case of the Ising model with Hamiltonian

H = −
∑
i,j

Jijsisj −
∑
i

Hisi, si = ±1. (1)

Here, the sum is over all lattice sites, Jij is the exchange coupling between spins i
and j and Hi denotes a local external magnetic field. Unless stated otherwise, we will
focus on the case of zero external fields, Hi = 0.

Let us first consider the case of homogeneous nearest-neighbor interactions, Jij =
J if i, j are nearest neighbors on the lattice and Jij = 0 otherwise. It is straightforward
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to verify the following identities for the partition function of the model [24],

Z =
∑
{si}

exp

βJ∑
〈i,j〉

sisj


=
∑
{si}

∏
〈i,j〉

eβJ
[
(1− p) + pδsi,sj

]
=
∑
{si}

∑
nij

∏
〈i,j〉

eβJ
[
(1− p)δnij ,0 + pδsi,sjδnij ,1

]
=
∑
{si}

∑
nij

∏
〈i,j〉

W (si, sj , nij).

(2)

Here, nij ∈ {0, 1} are new, binary variables that represent the state of the bonds as
‘active’ or ‘deleted’, and p = 1 − exp(−2βJ) is the bond activation probability. The
form (2) corresponds to the Fortuin-Kasteleyn (FK) representation of the Ising model
[25]. This transformation from a pure spin model to a probability measure jointly
defined on spins and ‘graph’ variables (i.e., bonds), known as the Edwards-Sokal
coupling [26], is at the heart of all cluster updates of this type. The representation
(2) implies the following update procedure known as the Swendsen-Wang algorithm
[9] for the ferromagnetic, nearest-neighbor Ising model:

1. Activate bond variables, i.e., set nij = 1, between neighboring spins with proba-
bility Pij = δsi,sjp.

2. Identify clusters of spins connected by active bonds.
3. Flip independent clusters with probability 1/2.

This generates a new spin configuration which is then subjected to a new iteration of
the same procedure etc. As it is possible to have single-site clusters, the algorithm is
ergodic. Together with detailed balance, which can be shown quite straightforwardly
by inspecting the configuration weight W (si, sj , nij) in the joint spin and bond space,
this guarantees that the underlying Markov chain converges to the equilibrium sta-
tionary distribution [7]. For the best possible choices of the algorithm used for cluster
identification [27], one full update of the Swendsen-Wang algorithm requires O(N+E)
operations, where N is the number of spins and E is the number of edges in the graph.
For a short-range lattice model, E = zN/2, where z is the coordination number, re-
sulting in O(N) scaling.

Consider now a long-range model where, in general, all Jij are non-zero and dif-
ferent. The FK representation (2) is easily generalized to this case by noting that the
weight function is now

W (si, sj , nij) = eβJij
[
(1− pij)δnij ,0 + pijδsi,sjδnij ,1

]
,

where the bond dependent activation probability is

pij = 1− exp(−2βJij).

Note that there is a subtlety in the notation here, with Pij = δsi,sjpij being the acti-
vation probability for the bond between i and j, while pij is the activation probability
conditioned on si = sj . The resulting cluster algorithm still satisfies ergodicity and
detailed balance, so is correct. As E = N2 − N , however, one update is now much
more expensive, and we expect O(N2) run-time scaling asymptotically, much like that
for single spin updates.

A variant of the Swendsen-Wang algorithm due to Wolff [10] grows and flips only
a single cluster, emanating from a single, randomly chosen seed site, thus reducing
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the effort for cluster identification (which can be done on the fly) and leads to larger
clusters being flipped, such that it is typically more efficient. While run times are
now proportional to the number of edges in a given cluster, the number of operations
required to update each spin once on average remains O(N2).

3 Luijten-Blöte algorithm

Thus, while the Swendsen-Wang or Wolff (single cluster) algorithms naturally extend
to the case of long-range interactions, their direct application leads to O(N2) scaling.
Luijten and Blöte [22] noticed that in the interesting regime of couplings and temper-
atures most probabilities pij will be very small and so there are many rejected bond
activation attempts. These can be avoided by directly sampling from the cumulative
distribution of bond probabilities. To see this, consider for definiteness a system with
power-law interactions,

Jij =
J

rd+σ
ij

. (3)

The bond activation probabilities are then pij = 1− exp(−2βJ/rd+σ
ij ) ≡ pr, and only

depend on the distance r = rij of lattice sites. In the following, we only make use
of this translational invariance and not of the specific power-law form of Eq. (3). We
first consider the special case of a chain, i.e., lattice dimension d = 1. The algorithm
is a single-cluster variant, where spins are added successively to the cluster starting
from an initial, random seed site by probing the bonds emanating from the currently
considered spin for activation. If the current spin is at site i, we consider spins at
sites j to be added in the order of increasing distance |j − i| along the chain. The
probability that the first bond connecting to i to be activated in this way is the spin
at site k is

q(k) = (1− p1)(1− p2) · · · (1− pk−1)pk.

We can pick a site k according to this probability by considering the cumulative
distribution,

C(k) =

k∑
n=1

q(n) = 1−
k∏

n=1

(1− pn). (4)

If a random number r drawn uniformly in [0, 1[ is found to be between C(k − 1) and
C(k), the next spin to be added to the cluster is at distance k. The next bond after
that must be drawn between the current spin i and another spin at distance l > k,
and so the relevant probability is

qk(l) = (1− pk+1)(1− pk+2) · · · (1− pl−1)pl,

and we need to sample from the cumulative distribution

Ck(l) =

l∑
n=k+1

qk(n) = 1−
l∏

n=k+1

(1− pn), (5)

such that C(k) = C0(k). For the third and higher spins we proceed iteratively along
the same lines.

Note that for free boundaries we also need to allow for the possibility of activating
bonds to spins with k < i, i.e., to the left of the current spin. This can be taken into
account by formally using an interaction strength 2J instead of J and using an extra
random number for each activated bond to decide whether it is to a spin to the left
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or to the right of the current one. For periodic boundaries, on the other hand, the
distance definition to use (for the chain) is modified to rij = min(|i− j|, L− |i− j|).

This leaves us to decide how efficiently one can sample from the cumulative dis-
tributions (4) and (5), respectively. We note that C(k) and Ck(l) are related by a
linear transformation,

Ck(l) =
pk+1

q(k + 1)
[C(l)− C(k)] ,

such that it is sufficient to store N elements in such a look-up table for a translation-
ally invariant system. In the most naive implementation, we would require a number
of comparisons that is O(N) to decide in which bin the random number r falls. This
can be of course be avoided using a binary search in a table of the probabilities Ck(l),
reducing the effort to a factor logN . If one wants to truncate the interaction to reduce
the storage and time effort for look-ups, this works less well in higher dimensions as
the number of distinct lattice distances to store in the vicinity of the seed site grows
quickly with d. Luijten and Blöte hence suggest [22, 28] to modify the interaction
potential in a way that allows for an analytic inversion of the cumulative distribution
function and to thus avoid the lookup tables altogether. This will not lead to correct
results for the original model considered, but it can be an affordable simplification if
one is only interested in universal quantities which are independent of such details.
A direct generalization of the exact algorithm to higher dimensions is feasible, but a
little bit tedious due to the necessary bookkeeping.

The approach of Luijten and Blöte thus entails a computational effort ofO(logE) =
O(logN) for the look-up of each weight (even in the non-translationally invariant
case), and since there are on average O(N) active bonds in the regime where the
potential (3) is integrable [23], the total effort is O(N logN).

4 Fukui-Todo algorithm

The cluster update could be simplified further if one could decide about the number
of active bonds at the onset and place them according to the local bond weights. This
is in fact possible if one allows the bond activation variables that are restricted to
nij ∈ {0, 1} following the FK representation to take arbitrary, non-negative integer
values ni,j = 0, 1, 2, . . . [23]. This is compatible with the FK weight if one ensures
that the probability of a non-zero nij for parallel spins is identical to the standard
bond activation probability pij , i.e.,

P(nij > 0|si = sj) =

∞∑
nij=1

f(nij) = pij = 1− e−2βJij . (6)

Instead of the binary distribution f(nij) = (1− pij)δnij ,0 + pijδnij ,1 of the standard
FK model, we now choose a Poisson distribution,

fλ(n) =
e−λλn

n!
, (7)

where the normalization condition (6) implies that λij = 2βJij . This can be formally
incorporated into a generalized FK representation by noting that the FK weight can
be factorized into the pij dependent part that only contains nij , while the remainder
depending on sisj is independent of pij ,

W (si, sj , nij) = eβJijV (nij)∆(si, sj , nij),
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where

V (nij) = (1− pij)δnij ,0 + pijδnij ,1,

∆(si, sj , nij) = δnij ,0 + δsi,sjδnij ,1.
(8)

We can therefore write down the FK representation of the model with general integer
bond variables,

V (nij) =
e−2βJij (2βJij)

nij

nij !
,

∆(si, sj , nij) = δnij ,0 + (1− δnij ,0)δsi,sj .

(9)

The advantage of allowing the bond variables to take on arbitrary integer values
nij ≥ 0 according to a Poisson distribution is that any (finite or infinite) sum of Pois-
son random variables, even of different means, leads again to a Poisson distribution,
i.e., it is a sum-stable distribution. Additionally, we have the following distribution
identity, ∏

(i,j)

fλij (nij) = fλtot(ntot)
ntot!∏
(i,j) nij !

∏
(i,j)

(
λij
λtot

)nij

, (10)

where (i, j) denotes the (undirected) bond connecting the sites i and j on the lattice.
The left-hand side corresponds to drawing each nij independently according to fλij

.
The right-hand side, on the other hand, represents a prescription where a total num-
ber ntot is drawn according to fλtot

with λtot =
∑

(i,j) λij =
∑

(i,j) 2βJij = 2βJtot

first and these ‘events’ are then randomly distributed over the actual bonds with a
probability λij/λtot. The equation expresses the fact that these two procedures lead
to the same final distribution of nij . The distribution of events can be performed using
tables with binary search as for the approach of Luijten and Blöte or, alternatively,
using Walker’s method of alias, as will be discussed below in Sec. 4.1.

4.1 Multi-cluster method

The modified FK representation can be used to simulate the underlying Ising model
as follows:

1. Draw a total number of events ntot ≥ 0 according to a Poisson distribution with
mean λtot = 2β

∑
(ij) Jij .

2. Distribute each event to one of the bonds with probability λij/λtot.
3. Identify clusters of like spins connected by bonds with nij > 0 and flip each cluster

with probability 1/2.

The normalization (6) ensures that the actual spin dynamics of this approach
is the same as that of the Swendsen-Wang approach. It is different, however, from
the Luijten-Blöte algorithm in the same sense as the Wolff algorithm is different
from Swendsen-Wang dynamics since in the single-cluster algorithm on average larger
clusters are flipped.

Let us discuss some implementation details and the computational complexity of
each step of the approach. The most straightforward algorithms for generating Poisson
random variates have running time proportional to λ [29], but there exist methods
whose run-time is independent of the mean [30]. In any case, as λtot = 2βJtot this
is O(E), in general, but reduces to O(N) for the relevant case of energy-integrable
couplings (i.e., σ > 0 for the Ising FM in one dimension). In this case, the total
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number of events to distribute is O(N). The distribution of events in the second
step is performed using a look-up operation. Specifically, if we use the shorthand pk,
k = 1, . . . , E for the probabilities λij/λtot, one draws a random number r uniformly in
[0, 1[. If r < p1 the event is allocated to edge 1. Alternatively, if r < p1 + p2 the event
is allocated to edge 2 etc. While this approach has O(E) scaling, it can easily be sped
up by a binary (bisection) search in the table

∑
i<j pi of cumulative probabilities,

bringing the computational effort down to O(lnE).
As it turns out, however, also this simplification is not optimal and a faster method

is provided by Walker’s method of alias that can be outlined as follows: one first sets
up a table Uk = Epk and tries to sample from the distribution pk by selecting one
of the entries in the table with a uniform random number in [1, E]. This would only
be correct, however, if each Uk = 1. In reality, there are “over-full” bins Uk > 1
and “under-full” bins Uk < 1. One now starts a procedure of re-distributing the
extraneous weight from over-full bins to under-full ones, keeping track of the origin of
weights using an alias table Ak. Once these tables are set up, perfect samples can be
drawn from pk using just two uniform random numbers, one to index into Uk and a
second one for the alias table Ak. Details can be found in Refs. [23, 29]. This approach
provides look-ups and distribution of an event in constant time.

For the cluster identification it is not convenient to store the bond states as is
sometimes done for short-range models as this would bring the computational (and
storage) effort up to O(N2) again. Instead, we make use of the tree-based union-and-
find method, where the cluster structure is stored as a forest of trees (implemented as
an array of pointers). Each time a previously deleted bond is activated, connectivity
queries decide whether the connected nodes belong to different trees, in which case
one of the trees is attached to the other at the current leaf. While for a naive im-
plementation connectivity queries and bond insertion have O(N) scaling, additional
heuristics known as path compression and tree balancing bring the run-time scaling
down to O(logN) if employing one of these heuristics or even almost O(1) if both
tricks are combined1. Details of this approach can be found in Refs. [13, 29, 32].

As a result, the Fukui-Todo approach shows run-time scaling that is, for all prac-
tical purposes, indistinguishable from O(N) for systems with energy convergent cou-
plings. This includes the mean-field model, where couplings are normally chosen to
be Jij = 1/N to ensure a finite energy in the thermodynamic limit. The storage re-
quirement is O(E) for the look-up table in the bond distribution step, whereas further
storage requirements are O(N) and therefore dominated by those of the tables. We
note that for the case of translationally invariant systems we can reduce the size of
the look-up table to O(N) as only the distance between sites matters, and in the
bond distribution step we can choose a site i at random as well as a distance k using
the alias method on the look-up table to find a partner site j to increment nij .

4.2 Single-cluster method

Single-cluster methods are typically more efficient than multi-cluster ones, and it is
indeed possible to formulate a single-cluster variant of the Fukui-Todo approach as
we will now show. The composition property (10) of the Poisson distribution can also
be used to separately decide about how many events are to be distributed over the
bonds connecting to a specific site i,∏

i,j

fλij
(nij) =

∏
i

fλi
(ni)

ni!∏
j 6=i nij !

∏
j 6=i

(
λij
λi

)nij

. (11)

1 Here, ‘almost’ refers to an extremely slow N dependence that is derived in Ref. [31].
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Note that on the left-hand side we now consider the product over pairs i, j of sites,
while in Eq. (10) the product was over bonds (i, j), so in Eq. (11) each bond is
counted twice. This identity is valid for λi = βJi = β

∑
j 6=i Jij and we have adopted

the notation ni =
∑
j 6=i nij . It is hence possible to draw a number ni of events for each

site according to the Poisson distribution fλi
(ni) and distribute them onto the bonds

adjacent to site i according to the probability λij/λi using, e.g., the alias method.
This generates exactly the same multi-cluster dynamics as the algorithm discussed in
Sec. 4.1.

At the same time, however, the weight decomposition (11) per site naturally sug-
gests a single-cluster variant of the algorithm. We start from the observation that a
logically consistent definition of the single-cluster method is to perform a full multi-
cluster decomposition of the lattice and then pick a lattice site uniformly at random
and flip the cluster to which the site belongs. We now focus on this cluster and at-
tempt to construct it without the full multi-cluster decomposition. We pick a seed
site at random, draw the relevant number of events ni according to fλi and distribute
them onto the bonds nij emanating from site i. For each nij that gets an event, we
put site j onto a stack of sites belonging to the cluster. We then fetch the next site
from the stack and proceed with it in the same way as with the seed site. The process
terminates if the stack is empty. While at first sight this might appear to construct a
cluster according to the generalized FK measure (9) it misses the fact that for a site
j that is ultimately not part of the cluster according to this construction no bond
events are ever generated and distributed, thus underestimating the probability that
j is added to the cluster. This is a consequence of the fact that in this scheme each
bond (i, j) has two chances to receive events, once when inspecting i and once when
inspecting j. We can correct for this bias by creating two events for each bond ema-
nating from a cluster site, corresponding to λ′i = 2λi. As a side effect, this also doubles
the average number of events on bonds that are between sites inside of the cluster,
but this does not affect the final cluster composition as all nij > 1 are equivalent for
the cluster identifcation. We hence arrive at the following single-cluster algorithm:

1. Choose a seed site i uniformly, put it onto the stack and flip si.
2. If the stack is non-empty, remove the topmost site, i; otherwise terminate the

algorithm.
3. Generate an integer ni > 0 randomly from the Poisson distribution f2λi

and
distribute ni events over the bonds (i, j) with probability λij/λi using the alias
method.

4. Put all such sites j for which nij > 0 and si 6= sj onto the stack and flip sj .
5. Goto step 2.

As for the multi-cluster variant, the look-up table simplifies for the translationally
invariant system. We see that this algorithm is significantly simpler than the multi-
cluster variant as the cluster identification does not require the tree-based union-and-
find algorithm. The run-time is strictly linear for all cases where Jtot = O(N), i.e.,
for models with convergent total energy.

5 Dynamical scaling

We now tend to an empirical analysis of the available algorithms for the case of the
power-law model according to Eqs. (1) and (3). As outlined above, the efficiency of a
Markov chain Monte Carlo algorithm comprises the two aspects of (1) the computa-
tional time required per update and (2) the scaling of relaxation or autocorrelation
times, in particular for simulations in the vicinity of continuous phase transitions.
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To study the second aspect, consider the time series At, t = 1, . . ., N of mea-
surements of an observable A. In thermal equilibrium, the autocorrelation function is
time-translation invariant and exhibits an asymptotically exponential decay,

C∆t = 〈AtAt+∆t〉 − 〈At〉〈At+∆t〉 ∼ e−∆t/τexp . (12)

The sampling efficiency is determined by the size of statistical fluctuations in the final
averages. For a set of N independent measurements, we know that

σ2
uncorr(Ā) =

σ2(A)

N
,

but in the presence of correlations between subsequent measurements of the form (12)
we find instead [33]

σ2(Ā) =
σ2(A)

Neff
, Neff = N/2τint,

where

τint =
1

2
+

N−1∑
∆t=1

C∆t
C0

(
1− ∆t

N

)
(13)

is the integrated autocorrelation time. In the vicinity of a critical point, we expect
dynamical scaling of autocorrelation times according to [7]

τint ∼ ξzint ,

where ξ is the spatial correlation length and zint denotes the dynamical critical ex-
ponent. The value of zint depends on the model under consideration as well as the
Monte Carlo algorithm. For short-range interactions and local updates, one in gen-
eral expects diffusive propagation of information, implying a coupling of time and
length scales according to zint ≈ 2. In mean field one can in fact show that zint = 2
exactly [34]. For cluster algorithms for short-range models, one finds significantly re-
duced values such as zint = 0.14(1) and zint = 0.46(3) [35] for the Swendsen-Wang
algorithm for the 2D and 3D Ising models, respectively, and zint ≈ 0.26 (2D) and
zint ≈ 0.28 (3D) for the Wolff algorithm [36]2. For the mean-field model, rigorous
arguments imply that zSW

int = 1 and zWolff
int = 0 [34, 37].

For the model with power-law interactions, a study of the Langevin dynamics for
the spherical model yields zMetro

int = σ [38]. This carries over to the Ising model in the
mean-field regime 0 < σ < 1/2. By analogy to the mean-field limit, we conjecture
that zSW

int = σ/2 for multi-cluster and zWolff
int = 0 for single-cluster updates in the

same regime. Due to the particular scaling of the correlation length with system size
according to ξ ∼ Lϙ above the upper critical dimension [39], where ϙ = d/dc and
dc = 4 for short-range models and ϙ = d/2σ for the interactions (3) [40], we expect
the following finite-size scaling of the autocorrelation times,

τint ∼ Lzintϙ ∼

L1/2 for Metropolis,
L1/4 for multi cluster,
L0 for single cluster.

(14)

We note that this is consistent with the behavior in the limit σ → 0, where the model
becomes equivalent to a mean-field system, and a scaling τint ∼ Lzint/4 is observed

2 Note that the estimates for the Wolff update are significantly older than those for
Swendsen-Wang and it is now believed that in reality zWolff

int ≤ zSW
int also in 2D.
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Figure 1. Left: Average relative size 〈|C|〉/N of clusters grown in the single-cluster algo-
rithms of the plain Wolff type (WO), the Luijten-Blöte algorithm (LB) and the single-cluster
Fukui-Todo update (sFT) for simulations of the 1D long-range critical Ising model at the
critical temperature in the non-mean-field (σ = 0.8) and mean-field (σ = 0.1 and σ = 0.2)
region of the interaction range. Right: Integrated autocorrelation times of the magnetization
for σ = 0.1 and σ = 0.2 in the mean-field regime below the critical value σ = 1/2 for the
Metropolis (MT), multi-cluster Fukui-Todo (mFT), Wolff (WO), Luijten-Blöte (LB) and
single-cluster Fukui-Todo (sFT) updates as a function of system size L.

according to the usual identification of N1/4 with the linear system size in the mean-
field case [34].

We have determined the integrated autocorrelation times of the energy and magne-
tization for the 1D power-law model using a standard self-consistent cut-off procedure
for the summation of the autocorrelation function given in Eq. (13). For a discussion
of this procedure, including the estimation of statistical errors see, e.g., Ref. [33]. Our
simulations were performed for systems with periodic boundary conditions and for
the interaction-range exponents σ = 0.1 and σ = 0.2 in the mean-field range σ < 1/2
as well as a number of values σ ≥ 0.5 in the non-trivial long-range regime. We used
an Ewald summed form of the interaction (3) [40] and performed simulations at the
previously determined critical temperatures Tc = 21.0013 for σ = 0.1, Tc = 10.8419
for σ = 0.2, Tc = 4.36395 for σ = 0.5, Tc = 3.54886 for σ = 0.6, Tc = 2.93061 for
σ = 0.7, Tc = 2.43267 for σ = 0.8, and Tc = 2.00144 for σ = 0.9 [41]. To provide
autocorrelation times on a common time scale for all algorithms it is convenient to
consider updates such that, on average, each spin is touched once (one sweep). While
this is automatic for the Metropolis and multi-cluster updates, for the single-cluster
variants it implies a rescaling of the raw autocorrelation times τ ′int determined from
a time series recorded after each individual single-cluster update according to

τ sc
int = τ ′int

〈|C|〉
N

,

where 〈|C|〉 denotes the average size of the simulated clusters. It is known that 〈|C|〉
provides an improved estimator of the susceptibility χ [24]. We hence expect a scaling
of 〈|C|〉 ∼ ξγ/ν and thus 〈|C|〉/N ∼ Lϙγ/ν−d. For the mean-field cases σ = 0.1 and
σ = 0.2 the values γ/ν = σ [40] and ϙ = 1/2σ imply ϙγ/ν − d = −1/2. What is
more, the long-range model has the pecularity that the value of γ/ν = 2 − η = σ
does not acquire any corrections beyond mean-field even for 1/2 ≤ σ ≤ 1, such that
〈|C|〉/N scales as Lσ−1 there. These theoretical considerations are fully confirmed by
the simulation results for the average cluster size summarized in Fig. 1 (left panel).

Taking this rescaling into account for the single-cluster variants, the right panel of
Fig. 1 shows our numerical results for the integrated autocorrelation times per sweep



Will be inserted by the editor 11

1

10

100

1000

1 10 100 1000 10000

τ i
n
t
(|M

|)

L

MT σ = 0.8
L0.82

mFT σ = 0.8
L0.10

WO σ = 0.8
LB σ = 0.8
sFT σ = 0.8

L0.06

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z i
n
t

σ

MT, zint(|M |)
mFT, zint(E)
LB, zint(E)

Figure 2. Left: Integrated autocorrelation times for the magnetization for the Metropolis
(MT), multi-cluster Fukui-Todo (mFT), Wolff (WO), Luijten-Blöte (LB) and single-cluster
Fukui-Todo (sFT) updates at σ = 0.8 in the non-trivial long-range regime. Right: Dynamical
critical exponents zint of the magnetization for the Metropolis update (MT) and of the
internal energy for the multi-cluster Fukui-Todo (mFT) and Luijten-Blöte (LB) updates as
a function of interaction range σ. The lines are Bezier curves to guide the eye.

of the (modulus of the) magnetization for the values σ = 0.1 and σ = 0.2 in the mean-
field regime 0 ≤ σ ≤ 1/2. We find excellent agreement with the theoretical prediction
(14) with some signs of the presence of scaling corrections for smaller system sizes. In
particular, the results confirm that the Wolff algorithm (WO), the Luijten-Blöte algo-
rithm (LB) and the single-cluster variant of the Fukui-Todo update (sFT) introduced
here exhibit the same asymptotic dynamical behavior which is substantially superior
to the dynamical behavior of the multi-cluster approach (mFT) and, even more so,
the Metropolis update (MT). While the data in Fig. 1 show the autocorrelation times
of the magnetization, we have also determined those of the internal energy and find
practically identical results there (not shown).

Performing similar runs for the non-trivial long-range value σ = 0.8, we arrive
at different estimates of zint, cf. the data shown in the left panel of Fig. 2. In this
regime we also start to see some differences in the scaling of autocorrelation times for
internal energies and magnetizations. It can be shown that for single-spin flip heatbath
dynamics the magnetization corresponds to the slowest mode, while for a random-
cluster single-bond update (Sweeny’s algorithm [13, 42]) the slowest mode is given by
the bond density corresponding to the internal energy [43]. We expect the same to
be true for the single-spin flip Metropolis update and the various cluster algorithms
considered here. We indeed find numerically that our estimates zint(|M |) > zint(E) for
Metropolis, while in contrast zint(|M |) < zint(E) for the cluster updates in the regime
σ ≥ 0.5. The right panel of Fig. 2 summarizes our results for zint(|M |) for Metropolis
and zint(E) for multi-cluster and single-cluster dynamics. Note that the single-cluster
algorithms WO, LB and sFT implement the same cluster dynamics, so result in the
same estimates of zint, and for clarity we only show one data set. We see that for
Metropolis the dynamical critical exponent is moving towards zint & 2 expected for
short-range models, while the behavior of multi-cluster and single-cluster updates
appears to coalesce at a value of zint close to 0. We did not perform simulations at
the upper critical interaction range σ = 1 as there the system undergoes a Kosterlitz-
Thouless phase transition [44], and we expect strong scaling corrections. For σ > 1
there is no finite-temperature phase transition [17].

We finally consider the behavior of the actual run-time per update for the different
algorithms. While such times are clearly hardware specific, the scaling of the different
algorithms is not, and so this is the aspect we focus on here. The left panel of Fig. 3
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Figure 3. Left: Times in seconds per sweep on an Intel Core i5 3210M CPU for the different
update algorithms applied to the 1D long-range Ising model with σ = 0.1 at criticality and
fits of the quadratic and linear laws to the data. Right: Time teff to generate an effective
independent sample of the model with different update algorithms. The inset shows the
normalized time teff/L per spin comparing the two most efficient approaches, LB and sFT.
The legend is the same as that of the plot on the left.

summarizes the run-times per sweep for the different algorithms run on the same
hardware, an Intel Core i5 3210M CPU running at 2.50GHz. The asymptotically
quadratic run-times of the MT and WO algorithms are clearly visible. For the LB
approach a slightly steeper than linear increase of run-times is seen, but as expected
it is difficult to resolve the additional logarithmic component explicitly. The behavior
of the mFT approach is compatible with linear scaling in the range of system sizes
considered. Finally, the sFT algorithm follows the expected linear scaling in L. For
the overall efficiency of the considered updates, it is the combination of computational
effort per sweep and the achieved integrated autocorrelation times that matters. We
hence consider the quantity

teff = tsweepτint,

which is the wall-clock time required to generate a statistically independent sample, as
the final measure of efficiency [13]. These times are shown in the right panel of Fig. 3
for the algorithms considered here. As the lines in the plot show, the expected scaling
from the computational complexity of the algorithms and the dynamical behavior
according to Eq. (14) of ∼ L2.5 for Metropolis, ∼ L2 for Wolff, ∼ L1.25 for multi-
cluster Fukui-Todo and ∼ L1 for the single-cluster Fukui-Todo approaches is fully
compatible with the numerical data. It is clearly visible that the LB algorithm and
the sFT approach introduced here show the asymptotically best performance, with
an advantage over the other approaches that grows algebraically with L. As the
inset displaying the time teff/L per spin shows, the sFT approach has perfect linear
algorithmic scaling , while the LB algorithm has a logarithmic overhead for the weight
look-up. The pronounced step in the run-times of both algorithms is due the fact that
at a given, hardware-dependent system size the look-up table starts to exceed the size
of the cache memory. At the largest system size considered here, L = 226 ≈ 7×107, the
sFT approach is about three times faster than LB. Comparing to the other algorithms,
we note that already for L = 65 536 the sFT algorithm is about a million times faster
to produce an independent sample than the Metropolis method.
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6 Summary and outlook

We have discussed a range of different algorithms for the simulation of spin systems
with long-range interactions. Naive approaches exhibit unfavorable O(N2) scaling
with the number of spins N , but it is possible to formulate cluster-update algorithms
that combine O(N lnN) or even O(N) scaling of the run-time per sweep with the
additional benefit of a reduced critical slowing down of systems close to continuous
phase transitions. The scaling of autocorrelation times in the mean-field regime 0 ≤
σ ≤ 1/2 of the 1D power-law Ising model is explained in terms of the modified
QFSS approach to finite-size scaling [39, 40]. We introduced a single-cluster algorithm
based on the generalized Fortuin-Kasteleyn representation (9) that is the only known
algorithm with strictly linear scaling of run times. It outperforms all previously known
approaches and, at the same time, is very straightforward to implement and can be
applied to systems in any dimension with or without translational invariance. In
the non-trivial long-range regime 1/2 ≤ σ ≤ 1, we observed a continuous variation of
dynamical critical exponents with the Metropolis exponent wandering in the direction
of the established value z & 2 expected for short-range models and the values for
single-cluster and multi-cluster dynamics coming closer together as the upper critical
range σ = 1 is approached.

Some important aspects of the problem have been omitted from the present discus-
sion. This includes the fact that for such systems with periodic boundary conditions a
summation over an infinite number of interaction partners is necessary to get reliable
results. The corresponding Ewald summation is discussed, e.g., in Refs. [40, 45]. An-
other aspect is the problem of measuring the energy for the long-range interactions, a
task that in itself has O(N2) scaling in the straightforward approach. As was shown
in Ref. [23], a linear algorithm can be formulated in the framework of the generalized
Fortuin-Kasteleyn representation (9). The algorithms discussed here can also be gen-
eralized for the presence of external magnetic fields [45], but they become less efficient
with increasing field strength. While a substantial reduction of critical slowing down
from cluster updates can only be expected for non-frustrated systems, the reduction
of computational complexity of the present approach as compared to local updates
might also make it interesting for simulations of spin-glass systems with long-range
interactions [46].
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Institute for Computing, Jülich, 2002), pp. 423–445.

34. N. Persky, R. Ben-Av, I. Kanter, and E. Domany, Phys. Rev. E 54, 2351 (1996).
35. Y. Deng et al., Phys. Rev. Lett. 99, 055701 (2007).
36. U. Wolff, Phys. Lett. B 228, 379 (1989).
37. T. S. Ray, P. Tamayo, and W. Klein, Phys. Rev. A 39, 5949 (1989).
38. S. A. Cannas, D. A. Stariolo, and F. A. Tamarit, Physica A 294, 362 (2001).
39. B. Berche, R. Kenna, and J. C. Walter, Nucl. Phys. B 865, 115 (2012).
40. E. J. Flores-Sola, B. Berche, R. Kenna, and M. Weigel, Eur. Phys. J. B 88, 1

(2015).
41. E. Luijten, Ph.D. thesis, Delft University of Technology, 1997.
42. M. Sweeny, Phys. Rev. B 27, 4445 (1983).



Will be inserted by the editor 15
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