1,564 research outputs found

    Polymer-solvent interaction parameters of SBS rubbers by inverse gas chromatography measurements

    Get PDF
    The solubility parameters of two SBS commercial rubbers with different structures (lineal and radial), and with slightly different styrene content have been determined by inverse gas chromatography technique. The Flory–Huggins interaction parameters of several polymer–solvent mixtures have also been calculated. The influence of the polymer composition, the solvent molecular weight and the temperature over these parameters have been discussed; besides, these parameters have been compared with previous ones, obtained by intrinsic viscosity measurements. From the Flory–Huggins interaction parameters, the infinite dilution activity coefficients of the solvents have been calculated and fitted to the well-known NRTL model. These NRTL binary interaction parameters have a great importance in modelling the separation steps in the process of obtaining the rubber

    Structural and functional findings in patients with moderate diabetic retinopathy

    Get PDF
    Purpose: To evaluate structural and functional ocular changes in patients with type 2 diabetes mellitus (DM2) and moderate diabetic retinopathy (DR) without apparent diabetic macular edema (DME) assessed by optical coherence tomography (OCT) and microperimetry. Methods: This was a single-center cross-sectional descriptive study for which 75 healthy controls and 48 DM2 patients with moderate DR were included after applying exclusion criteria (one eye per patient was included). All eyes underwent a complete ophthalmic examination (axial length, macular imaging with swept-source OCT, and MAIA microperimetry). Macular thicknesses, ganglion cell complex (GCC) thicknesses, and central retinal sensitivity were compared between groups, and the relationships between the OCT and microperimetry parameters were evaluated. Results: Macular thickness was similar in both groups (242.17 ± 35.0 in the DM2 group vs 260.64 ± 73.9 in the control group). There was a diminution in the parafoveal area thickness in the DM2 group in the GCC complex. Retinal sensitivity was reduced in all sectors in the DM2 group. The central global value was 24.01 ± 5.7 in the DM2 group and 27.31 ± 2.7 in the control group (p < 0.001). Macular integrity was 80.89 ± 26.4 vs 64.70 ± 28.3 (p < 0.001) and total mean threshold was 23.90 ± 4.9 vs 26.48 ± 2.6 (p < 0.001) in the DM2 and control group, respectively. Moderate correlations were detected between the central sector of MAIA microperimetry and retina total central thickness (- 0.347; p = 0.0035). Age, visual acuity, and hemoglobin A1c levels also correlated with retinal sensitivity. Conclusion: Macular GCC thickness and central retinal sensitivity were reduced in patients with moderate DR without DME, suggesting the presence of macular neurodegeneration.[Figure not available: see fulltext.] © 2021, The Author(s)

    Core Mass Estimates in Strong Lensing Galaxy Clusters: A Comparison between Masses Obtained from Detailed Lens Models, Single-halo Lens Models, and Einstein Radii

    Get PDF
    The core mass of galaxy clusters is both an important anchor of the radial mass distribution profile and a probe of structure formation. With thousands of strong lensing galaxy clusters being discovered by current and upcoming surveys, timely, efficient, and accurate core mass estimates are needed. We assess the results of two efficient methods to estimate the core mass of strong lensing clusters: the mass enclosed by the Einstein radius (M(<θE), where θE is approximated from arc positions, and a single-halo lens model (MSHM), compared with measurements from publicly available detailed lens models (MDLM) of the same clusters. We use data from the Sloan Giant Arc Survey, the Reionization Lensing Cluster Survey, the Hubble Frontier Fields, and the Cluster Lensing and Supernova Survey with Hubble. We find a scatter of 18.1% (8.2%) with a bias of −7.1% (1.0%) between Mcorr(<θarcs){M}_{\mathrm{corr}}\left(\lt {\theta }_{\mathrm{arcs}}\right) (MSHM) and MDLM. Last, we compare the statistical uncertainties measured in this work to those from simulations. This work demonstrates the successful application of these methods to observational data. As the effort to efficiently model the mass distribution of strong lensing galaxy clusters continues, we need fast, reliable methods to advance the field

    Bacterially mediated removal of phosphorus and cycling of nitrate and sulfate in the waste stream of a "zero-discharge" recirculating mariculture system

    Get PDF
    Simultaneous removal of nitrogen and phosphorus by microbial biofilters has been used in a variety of water treatment systems including treatment systems in aquaculture. In this study, phosphorus, nitrate and sulfate cycling in the anaerobic loop of a zero-discharge, recirculating mariculture system was investigated using detailed geochemical measurements in the sludge layer of the digestion basin. High concentrations of nitrate and sulfate, circulating in the overlying water (~15 mM), were removed by microbial respiration in the sludge resulting in a sulfide accumulation of up to 3 mM. Modelling of the observed S and O isotopic ratios in the surface sludge suggested that, with time, major respiration processes shifted from heterotrophic nitrate and sulfate reduction to autotrophic nitrate reduction. The much higher inorganic P content of the sludge relative to the fish feces is attributed to conversion of organic P to authigenic apatite. This conclusion is supported by: (a) X-ray diffraction analyses, which pointed to an accumulation of a calcium phosphate mineral phase that was different from P phases found in the feces, (b) the calculation that the pore waters of the sludge were highly oversaturated with respect to hydroxyapatite (saturation index = 4.87) and (c) there was a decrease in phosphate (and in the Ca/Na molar ratio) in the pore waters simultaneous with an increase in ammonia showing there had to be an additional P removal process at the same time as the heterotrophic breakdown of organic matter

    Self Consistent Molecular Field Theory for Packing in Classical Liquids

    Full text link
    Building on a quasi-chemical formulation of solution theory, this paper proposes a self consistent molecular field theory for packing problems in classical liquids, and tests the theoretical predictions for the excess chemical potential of the hard sphere fluid. Results are given for the self consistent molecular fields obtained, and for the probabilities of occupancy of a molecular observation volume. For this system, the excess chemical potential predicted is as accurate as the most accurate prior theories, particularly the scaled particle (Percus-Yevick compressibility) theory. It is argued that the present approach is particularly simple, and should provide a basis for a molecular-scale description of more complex solutions.Comment: 6 pages and 5 figure

    Stability of the Scalar Potential and Symmetry Breaking in the Economical 3-3-1 Model

    Get PDF
    A detailed study of the criteria for stability of the scalar potential and the proper electroweak symmetry breaking pattern in the economical 3-3-1 model, is presented. For the analysis we use, and improve, a method previously developed to study the scalar potential in the two-Higgs-doublet extension of the standard model. A new theorem related to the stability of the potential is stated. As a consequence of this study, the consistency of the economical 3-3-1 model emerges.Comment: to be published in EPJ C, 13 page
    • …
    corecore