38 research outputs found

    Adiabatic quantization of Andreev quantum billiard levels

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Noiseless scattering states in a chaotic cavity

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Quantum-to-classical crossover of mesoscopic conductance fluctuations

    Get PDF
    We calculate the system-size-over-wave-length (MM) dependence of sample-to-sample conductance fluctuations, using the open kicked rotator to model chaotic scattering in a ballistic quantum dot coupled by two NN-mode point contacts to electron reservoirs. Both a fully quantum mechanical and a semiclassical calculation are presented, and found to be in good agreement. The mean squared conductance fluctuations reach the universal quantum limit of random-matrix-theory for small systems. For large systems they increase M2\propto M^2 at fixed mean dwell time τDM/N\tau_D \propto M/N. The universal quantum fluctuations dominate over the nonuniversal classical fluctuations if N<MN < \sqrt{M}. When expressed as a ratio of time scales, the quantum-to-classical crossover is governed by the ratio of Ehrenfest time and ergodic time.Comment: 5 pages, 5 figures: one figure added, references update

    Nonequilibrium stabilization of charge states in double quantum dots

    Full text link
    We analyze the decoherence of charge states in double quantum dots due to cotunneling. The system is treated using the Bloch-Redfield generalized master equation for the Schrieffer-Wolff transformed Hamiltonian. We show that the decoherence, characterized through a relaxation τr\tau_{r} and a dephasing time τϕ\tau_{\phi}, can be controlled through the external voltage and that the optimum point, where these times are maximum, is not necessarily in equilibrium. We outline the mechanism of this nonequilibrium-induced enhancement of lifetime and coherence. We discuss the relevance of our results for recent charge qubit experiments.Comment: 5 pages, 5 figure

    Low-energy quasiparticle excitations in dirty d-wave superconductors and the Bogoliubov-de Gennes kicked rotator

    Get PDF
    We investigate the quasiparticle density of states in disordered d-wave superconductors. By constructing a quantum map describing the quasiparticle dynamics in such a medium, we explore deviations of the density of states from its universal form (E\propto E), and show that additional low-energy quasiparticle states exist provided (i) the range of the impurity potential is much larger than the Fermi wavelength [allowing to use recently developed semiclassical methods]; (ii) classical trajectories exist along which the pair-potential changes sign; and (iii) the diffractive scattering length is longer than the superconducting coherence length. In the classically chaotic regime, universal random matrix theory behavior is restored by quantum dynamical diffraction which shifts the low energy states away from zero energy, and the quasiparticle density of states exhibits a linear pseudogap below an energy threshold EΔ0E^* \ll \Delta_0.Comment: 4 pages, 3 figures, RevTe

    NEMA NU4-2008 Performance Evaluation of Albira: A Two-Ring Small-Animal PET System Using Continuous LYSO Crystals

    Get PDF
    Goals: This paper presents the performance review based on a dual-ring Positron Emission Tomography (PET) scanner being a part of Bruker Albira: a multi-modal small-animal imaging platform. Each ring of Albira PET contains eight detectors arranged as octagon, and each detector is built using a single continuous lutetium-yttrium oxyorthosilicate crystal and multi-anode photo multiplier tube. In two-ring configuration, the scanner covers 94.4 mm in axial- and 80´80 mm in trans-axial direction, which is sufficient to acquire images of small animals (e.g. mice) without the need of moving the animal bed during the scan. Methods: All measurements and majority of data processing were performed according to the NEMA NU4-2008 standard with one exception. Due to the scanner geometry, the spatial resolution test was reconstructed using iterative algorithm instead of the analytical one. The main performance characteristics were compared with those of the other PET sub-systems of tri-modal smallanimal scanners. Results: The measured spatial resolution at the centre of the axial field of view in radial, tangential and axial directions was 1.72, 1.70 and 2.45 mm, respectively. The scatter fraction for the mouse-like phantom was 9.8% and for the rat-like phantom, 21.8%. The maximum absolute sensitivity was 5.30%. Finally, the recovery co-efficients for 5, 4, 3, 2, 1 mm diameter rods in image quality phantom were: 0.90, 0.77, 0.66, 0.30 and 0.05, respectively. Conclusion: The Bruker Albira is a versatile small-animal multi-modal device that can be used for variety of studies. Overall the PET sub-system provides a good spatial resolution coupled with better-than average sensitivity and the ability to produce good quality animal images when administering low activities

    Monitoring phenylalanine concentrations in the follow-up of phenylketonuria patients:An inventory of pre-analytical and analytical variation

    Get PDF
    Background: Reliable measurement of phenylalanine (Phe) is a prerequisite for adequate follow-up of phenylketonuria (PKU) patients. However, previous studies have raised concerns on the intercomparability of plasma and dried blood spot (DBS) Phe results. In this study, we made an inventory of differences in (pre-)analytical methodology used for Phe determination across Dutch laboratories, and compared DBS and plasma results. Methods: Through an online questionnaire, we assessed (pre-)analytical Phe measurement procedures of seven Dutch metabolic laboratories. To investigate the difference between plasma and DBS Phe, participating laboratories received simultaneously collected plasma-DBS sets from 23 PKU patients. In parallel, 40 sample sets of DBS spotted from either venous blood or capillary fingerprick were analyzed. Results: Our data show that there is no consistency on standard operating procedures for Phe measurement. The association of DBS to plasma Phe concentration exhibits substantial inter-laboratory variation, ranging from a mean difference of −15.5% to +30.6% between plasma and DBS Phe concentrations. In addition, we found a mean difference of +5.8% in Phe concentration between capillary DBS and DBS prepared from venous blood. Conclusions: The results of our study point to substantial (pre-)analytical variation in Phe measurements, implicating that bloodspot Phe results should be interpreted with caution, especially when no correction factor is applied. To minimize variation, we advocate pre-analytical standardization and analytical harmonization of Phe measurements, including consensus on application of a correction factor to adjust DBS Phe to plasma concentrations
    corecore