Noiseless scattering states in a chaotic cavity

P G Silvestiov, ${ }^{12}$ M C Goorden, ${ }^{1}$ and C W J Beenakker ${ }^{1}$
${ }^{1}$ Instituut Lorentz Unversutett Leiden PO Box 95062300 RA Leiden The Netherlands
${ }^{2}$ Budkeı Insitute of Nuclear Physics 630090 Novosibirsk Russta
(Received 11 Febiuary 2003, published 9 June 2003)

Abstract

Shot norse in a chaotic cavity (Lyapunov exponent λ, level spacing δ, lineai dimension L), coupled by two N -mode point contacts to election reservois, is studied as a measure of the ciossover trom stochastic quantum tuansport to deterministic classical transport The tiansition pioceeds through the formation of fully transmitted or ieffected scattering states, which we construct explicitly The fully tuansmited states contribute to the mean cunent \bar{I}, but not to the shot-noise powei S We find that these noiseless transmission channels do not exist for $N \leqslant \sqrt{k_{F} L}$, where we expect the random-matux result $S / 2 e \bar{I}=1 / 4$ For $N \gtrsim \sqrt{k_{F} L}$ we predict a suppiession of the noise $\sigma\left(k_{F} L / N^{2}\right)^{N \delta / \pi \hbar \lambda}$ This nonlinear contact dependence of the noise could help to distunguish ballistic chaotic scattering from random impuity scatlering in quantum transport

DOI 10 1103/PhysRevB 67241301
PACS numbel(s) $7363 \mathrm{Kv}, 0545 \mathrm{Mt}, 0365 \mathrm{Sq}, 7270+\mathrm{m}$

Shot noise can distmguish deterministic scattering, charactenstic of paticles, fiom stochastic scattering, charactenstic of waves Particle dynamics is deteiministic A given initial position and momentum fix the entue trajectory In particulat, they fix whethei the paticle will be tuansmitted or reflected, so the scattering is noiseless Wave dynamics is stochastic The quantum uncertainty in position and momentum introduces a probabilistic element into the dynamics, so it is noisy

The suppression of shot norse in a conductor with deterministic scatteing was predicted many yeats ago fiom this qualitative argument ${ }^{1} \mathrm{~A}$ better understanding, and a quantitative description, of how shot noise measures the tiansition fiom patticle to wave dynamics in a chaotic quantum dot was put forward by Agam, Aleıner, and Larkin, ${ }^{2}$ and developed further in Ref 3 The key concept is the Ehienfest time τ_{E}, which is the characteristic time scale of quantum chaos ${ }^{4}$ The noise power $S \propto \exp \left(-\tau_{E} / \tau_{D}\right)$ was predicted to vanush exponentrally with the ratio of τ_{E} and the mean dwell time $\tau_{D}=\pi \hbar / N \delta$ in the quantum dot (with δ the level spacing and N the number of modes in each of the two point contacts through which the curnent is passed) A recent measurement of the N dependence of S is consistent with this piediction for $\tau_{E}<\tau_{D}$, although an alter native explanation in teims of shoit-1ange impunty scattering descibes the data equally well ${ }^{5}$

The theory of Ref 2 introduces the stochastic element by means of long-range impuity scatteing, and adjusts the scattering rate so as to mimic the effect of a finite Ehienfest time Here we take the alter native approach of explicitly constructing norseless channels in a chaotic quantum dot These ate scattering states which ate etther fully tiansmitted or fully reflected in the semiclassical limit They are not described by random matux theory ${ }^{6}$ By determming what fraction of the avalable channels is norseless, we can deduce a precise upper bound for the shot-norse power Arandom matix conjecture for the remaming noisy channels gives an explicit form of $S(N)$ We find that the onset of the classical suppression of the noise is described not only by the Ehrenfest time, but by the difference of τ_{E} and the ergodic time τ_{0},
which we intooduce and calculate in this Rapid Communication The resulting nonlmear dependence of $\ln S$ on N may help to distinguish between the competing explanations of the experimental data ${ }^{5}$

We illustrate the construction of norseless scattering states for the two-dimensional billaad with smooth confining potential $U(x, y)$ shown in Fig 1 The outer equipotental defines the area in the $x-y$ plane which is classically accessible at the Fermı energy $E_{F}=p_{\Gamma}^{2} / 2 m$ (with $p_{F}=\hbar k_{\Gamma}$ the Fermı momentum) The motion in the closed billiard is chaotic, with a Lyapunov exponent λ We assume the billard to be connected at $\lambda=0$ and $x=L$ by two similar point contacts to leads of width W extended along the $\pm x$ duection

The beam of elections injected through a point contact into the billiaid has a cioss section W and tuansverse momenta in the range $\left(-p_{W}, p_{W}\right)$ The number of channels N $=p_{W} W / \hbar$ in the lead is much smaller than the number of

FIG 1 Selected equipotentals of the electron billaatd The outet equipotential is at E_{F}, the other equipotentials are at merements of $019 L_{F}$ Dashed lines a and b show the sections descubed in the text Also shown is a flux tube of transmitted tiajectones all ongi nating from a single closed contour in a tuansmission band representing the spatal extension of a fully tansmited scatterng state The flux tube is wide at the two openings and squeezed inside the billand

FIG 2. Section of phase space at $p_{x}=\sqrt{p_{F}^{2}-p_{y}^{2}}$ and $x=0$, colresponding to line $a \mathrm{in}$ Fig 1. Each dot in this surface of section is the startung point of a classical trajectory that is transmitted through the lead at $x=L$ (black/red), or reflected back through $x=0$ (gray/ green) The points lie in narrow bands Only the tajectories with dwell time $t<12 m L / p_{F}$ are shown.
channels $M \approx p_{F} L / \hbar$ supported by a typical cross section of the billiard. Whrle $W / L \ll 1 \mathrm{~m}$ general, the ratio p_{W} / p_{F} depends on detarls of the potential near the point contact. If $p_{W} / p_{F} \ll 1$ one speaks of a collimated beam. This is typical for a smooth potential, while a hard-wall potential typically has $p_{W} \simeq p_{F}$ (no collimation). We define r_{mu} $=\min \left(W / L, p_{W} / p_{F}\right)$ and $r_{\max }=\max \left(W / L, p_{W} / p_{F}\right)$.

The classical phase space is four dimensional. By restricting the energy to E_{F} and taking $x=0$ we obtain the twodimensional section of phase space shown in Fig. 2. The accessible values of y and p_{y} he in a disc-shaped region of area $\mathcal{A}=N h$ in this surface of section. Up to factors of order unity, the disk has width $r_{\text {min }}$ and length $r_{\text {max }}$ (if coordinate and momentum are measured in units of L and p_{F}, respectively). In Fig. 2 one has $r_{\min } \simeq r_{\max }$. Each point in the disc defines a classical trajectory that enters the billiard (for positive p_{λ}) and then leaves the billiard either through the same lead (reflection) or through the other lead (transmission). The points lie in narrow bands, which we will refer to as "transmission bands" and "reflection bands."

It is evident from Fig. 2 that the area A_{j} enclosed by a typical transmission (or reflection) band j is much less than \mathcal{A}. For an estimate we consider the time $t\left(y, p_{y}\right)$ that elapses before transmission. Let t, be the dwell time averaged over the starting points y, p, in a single band. The fluctuations of t around the average are of the order of the time t_{W} $=m W / p_{W}$ to cross the point contact, which is typically $<t_{j}$. As we will see below, the area of the band decreases with t, as

$$
\begin{equation*}
A_{1}=\mathcal{A}_{0} \exp \left(-\lambda t_{l}\right) \quad \text { if } t_{,} \Rightarrow 1 / \lambda, t_{W} . \tag{1}
\end{equation*}
$$

The prefactor $\mathcal{A}_{0}=\mathcal{A} r_{\text {min }} / r_{\text {max }}$ depends on the degree of collimation. In Ref. 7 the symmetric case $r_{\text {min }}=r_{\text {max }}$ was assumed, when $\mathcal{A}_{0}=\mathcal{A}$.

We now proceed to the construction of fully transmitted scattering states. To this end we consider a closed contour \mathcal{C} withn a transmission band J. The starting points on the contour define a famıly of trajectories that form a flux tube inside the billiard (see Fig. 1). The semiclassical wave function

$$
\begin{equation*}
\psi(x, y)=\sum_{\sigma} \sqrt{\rho_{\sigma}(x, y)} \exp \left[i S_{\sigma}(x, y) / \hbar\right] \tag{2}
\end{equation*}
$$

is determined as usual from the action \mathcal{S}_{σ} and density ρ_{σ} that solve the Hamilton-Jacobi and continuity equations

$$
\begin{equation*}
|\nabla \mathcal{S}|^{2}=2 m\left(E_{\Gamma}-U\right), \quad \nabla \cdot(\rho \nabla \mathcal{S})=0 \tag{3}
\end{equation*}
$$

The action is multivalued and the index σ labels the different sheets. Typically, there are two sheets, one onginating from the upper half of the contour \mathcal{C} and one from the lower half.

The requirement that ψ is single valued as one winds around the contour imposes a quantization condition on the enclosed area,

$$
\begin{equation*}
\oint_{\mathcal{C}} p_{y} d y=(n+1 / 2) h \tag{4}
\end{equation*}
$$

The increment $1 / 2$ accounts for the phase shift acquired at the two turning points on the contour. The quantum number $n=0,1,2, \ldots$ is the channel mdex. The latgest value of n occurs for a contour enclosing an area $A_{,}$. The number of transmission channels N, within band j is therefore given by A_{l} / h, with an accuracy of order unity. In view of Eq. (l) we have

$$
\begin{gather*}
N_{j} \simeq\left(\mathcal{A}_{0} / h\right) \exp \left(-\lambda t_{l}\right) \text { for } t_{l}<\tau_{L}, \tag{5a}\\
N_{l}=0 \text { for } t_{j}>\tau_{E} . \tag{5b}
\end{gather*}
$$

The time

$$
\begin{equation*}
\tau_{E}=\lambda^{-1} \ln \left(\mathcal{A}_{0} / h\right)=\lambda^{-1} \ln \left(N r_{\min } / r_{\max }\right), \tag{6}
\end{equation*}
$$

above which there are no fully transmitted channels, is the Ehrenfest time of this problem.

By decomposing one of these N, scattering states into a given basis of transverse modes in the lead one constructs an eigenvector of the transmission matrix product $t t^{\dagger}$. The corresponding eigenvalue $\mathcal{T}_{j, n}$ is equal to unity with exponential accuracy in the semiclassical limit $n \geqslant 1$. Because of the degeneracy of this eigenvalue any linear combination of eigenvectors is again an ergenvector. This manfests itself in our construction as an arbitrariness in the choice of \mathcal{C}.

We observe in Fig. 1 that the spatal density profile $\rho(x, y)$ of a fully transmitted scattering state is highly nonuniform. The flux tube is broad (width of order W) at the two openings, but is squeezed down to very small width inside the billiand. A similar effect was noted ${ }^{7}$ in the excited states of an Andreev billiard (a cavity connected to a superconductor). Following the same argument we estumate the minimal width of the flux tube as $W_{\mathrm{mmn}} \approx L \sqrt{N_{i} / k_{\Gamma} L}$.

The total number

$$
\begin{equation*}
N_{0}=\sum_{1} N_{1}=N \int_{0}^{\pi_{1}} P(t) d t \tag{7}
\end{equation*}
$$

FIG. 3. Dwell-time distribution for the billiard of Fig. 1. Electrons at the Fermi energy are injected through the left lead. Time is in units of $m L / p_{F}$. Inset: the same data on a semilogarithmic scale with larger bin size of the histogram. Three characteristic time scales are seen: t_{W}, τ_{0}, and τ_{D}.
of fully transmitted and reflected channels is determined by the dwell-time distribution $P(t) .{ }^{8}$ Figure 3 shows this distribution in our billiard. One sees three different time scales. The narrow peaks represent individual transmission (reflection) bands. They consist of an abrupt jump followed by an exponential decay with a time constant t_{W}. These exponential tails correspond to the borders of the bands, where the trajectory bounces many times between the sides of the point contact. If we smooth $P(t)$ over such short time intervals, an exponential decay with time constant $\tau_{D}=\pi \hbar / N \delta$ is obtained (inset). The decay starts at the so called "ergodic time" τ_{0}. There are no trajectories leaving the cavity for t $<\tau_{0}$. So the smoothed dwell-time distribution has the form

$$
\begin{equation*}
P(t)=\tau_{D}^{-1} \exp \left[\left(\tau_{0}-t\right) / \tau_{D}\right] \theta\left(t-\tau_{0}\right) \tag{8}
\end{equation*}
$$

with $\theta(t)$ the unit step function.
In order to find τ_{0} we consider Fig. 4 , where the section of phase space along a cut through the middle of the billiard is shown (line b in Fig. 1). It is convenient to measure the momentum and coordinate along b in units of p_{F} and L. The

FIG. 4. Section of phase space in the middle of the billiard, along line b in Fig. 1. The subscript \| indicates the component of coordinate and momentum along this linc. Elongated black areas O, show the positions of the fifth crossing of the injected beam with this surface of section. The area $O_{\text {mital }}$ is the position of the first crossing. Points inside $O_{\text {final }}$ leave the billiard without further crossing of line b. For times less than the ergodic time τ_{0} there is no intersection between O, and $O_{\text {tinal }}$.
injected beam crosses the section for the first time over an area $O_{\text {intall }}$ of size $r_{\mathrm{max}} \times r_{\mathrm{mm}}=h N / p_{F} L$. (Fig. 4 has r_{mm} $=r_{\max }$, but the estimates hold for any $r_{\min }<r_{\max }<1$.) Further crossings consist of increasingly more elongated areas. The fifth crossing is shown in Fig. 4. The flux tube intersects line b in a few disjunct areas O_{1}, of width $r_{m m} e^{-\lambda t}$ and total length $r_{\text {max }} e^{\lambda t}$. (Due to conservation of the integral $\oint \mathbf{p} \cdot d \mathbf{r}$ enclosing the flux tube, the total area $\Sigma_{j} O_{J}$ decreases only when particles leave the billiard.) The typical separation of adjacent areas is $\left(r_{\max } e^{\lambda t}\right)^{-1}$. To leave the billiard (through the right contact) without a further crossing of b a particle should pass through an area $O_{\text {final }} \simeq r_{\max } \times r_{\text {min }}$. This is highly improbable ${ }^{9}$ until the separation of the areas O, becomes of order $r_{\max }$, leading to the ergodic time

$$
\begin{equation*}
\tau_{0}=\lambda^{-1} \ln r_{\max }^{-2} \tag{9}
\end{equation*}
$$

The ergodic time varies from $\tau_{0} \leq \lambda^{-1}$ for $r_{\max } \simeq 1$ to τ_{0} $=\lambda^{-1} \ln \left(k_{F} L / N\right)$ for $r_{\min } \approx r_{\max }$. The overlap of the areas O, and $O_{\text {tnal }}$ is the mapping of the transmission band onto the surface of section b. It has an area $p_{F} L r_{\text {min }}^{2} e^{-\lambda t}$ $=\mathcal{A}\left(r_{\min } / r_{\max }\right) e^{-\lambda t}$, leading to Eq. (1).

Substituting Eq. (8) into Eq. (7) we arrive at the number N_{0} of fully transmitted and reflected channels:

$$
\begin{gather*}
N_{0}=N \theta\left(\tau_{E}-\tau_{0}\right)\left[1-e^{\left(\tau_{0}-\tau_{L}\right) / \tau_{\mathrm{D}}}\right] \tag{10}\\
\tau_{E}-\tau_{0}=\lambda^{-1} \ln \left(N^{2} / k_{F} L\right) \tag{11}
\end{gather*}
$$

There are no fully transmitted or reflected channels if τ_{E} $<\tau_{0}$, and hence if $N<\sqrt{k_{F} L}$. Notice that the dependence of τ_{E} and τ_{0} separately on the degree of collimation drops out of the difference $\tau_{E}-\tau_{0}$. The number of noiseless channels is therefore insensitive to details of the confining potential. An Ehrenfest time $\propto \ln \left(N^{2} / k_{F} L\right)$ has appeared before in connection with the Andreev billiard, ${ }^{10}$ but the role of collimation (and the associated finite ergodic time) was not considered there.

Equations (5) and (8) imply that the majority of noiseless channels group in bands having $N_{j} \gg 1$, which justifies the semiclassical approximation. The total number of these noiseless bands is $\left(N-N_{0}\right) / \lambda \tau_{D}$, which is much less than both $N-N_{0}$ and N_{0}. Because of this inequality the relatively short trajectories contributing to the noiseless channels are well separated in phase space from other, longer trajectories (cf. Fig. 2).

The shot-noise power S is related to the transmission eigenvalues by ${ }^{11}$

$$
\begin{equation*}
S=2 e \bar{I} g^{-1} \sum_{k=1}^{N} \mathcal{T}_{k}\left(1-\mathcal{T}_{k}\right) \tag{12}
\end{equation*}
$$

with \bar{I} the time-averaged current and $g=\Sigma_{h} \mathcal{T}_{h}$ the dimensionless conductance. The N_{0} fully transmitted or reflected channels have $T_{h}=1$ or 0 , hence they do not contribute to the noise. The remaining $N-N_{0}$ channels contribute at most $1 / 4$ per channel to $S g / 2 e \bar{l}$. Using that $g=N / 2$ for large N, we arrive at an upper bound for the noise power $S<e \bar{I}(1$ $\left.-N_{0} / N\right)$.

For a more quantitative description of the noise power we need to know the distibution $P(\mathcal{T})$ of the tiansmission eigenvalues for the $N-N_{0}$ norsy channels, which cannot be descubed semiclassically We expect the distubution to have the same bimodal form $P(\mathcal{T})=\pi^{-1} \mathcal{T}^{-1 / 2}(1-\mathcal{T})^{-1 / 2}$ as in the case $N_{0}=0^{6}$ This expectation is motivated by the eatien observation that the N_{0} noseless channels are well separated in phase space from the $N-N_{0}$ norsy ones Using this form of $P(T)$ we find that the contribution to $S g / 2 e \bar{I}$ per norsy channel equals $\int_{0}^{1} \mathcal{T}(1-\mathcal{T}) P(T) d T=1 / 8$, half the maximum value The Fano factor $F=S / 2 e \bar{I}$ is thus estımated as

$$
\begin{gather*}
F=\frac{1}{4} \quad \text { fot } N \leq \sqrt{k_{F} L} \tag{13a}\\
F=\frac{1}{4}\left(k_{\Gamma} L / N^{2}\right)^{N \delta / \pi \hbar \lambda} \quad \text { for } N \geqq \sqrt{k_{F} L} \tag{13b}
\end{gather*}
$$

This result should be compared with that of Ref $2 F^{\prime}$ $=\frac{1}{4}\left(k_{F} L\right)^{-N \delta / \pi h \lambda} \quad$ The 1 atio $F^{\prime} / F=\exp [(2 N \delta / \pi \hbar \lambda) \ln (N /$ $k_{\Gamma} L$)] is always close to unity (because $N \delta / \pi \hbar \lambda \approx N / k_{F} L$ $\leftrightarrow 1)$ But $F-\frac{1}{4}$ and $F^{\prime}-\frac{1}{4}$ are entioly different for N $\leq \sqrt{k_{F} L}$, which is the ielevant regime in the experiment ${ }^{5}$

There the N dependence of the shot norse was fitted as F $=\frac{1}{4}\left(1-t_{Q} / \tau_{D}\right)=\frac{1}{4}(1-$ const $\times N)$, where t_{Q} is some N-independent time Equation (13) predicts a more complex N dependence, a plateau followed by a dectease as $\ln F \propto$ $-N \ln \left(N^{2} / k_{T} L\right)$, which could be observable if the experiment extends over a latger 1 ange of N

We mention two other experimentally obser vable features of the theory presented here The reduction of the Fano factor desciabed by Eq (13) is the cumulative effect of many norseless bands The appearance of new bands with increasing N introduces a fine stiucture in $F(N)$, consisting of a senies of cusps with a square-ioot singulanity near the cusp The second feature is the highly nonunform spatial extension of open channels, evident in Fig 1, which could be observed with the scanning tunneling micioscopy technique of Ref 12 Fiom a more general perspective the noiseless channels constructed in this paper show that the 1 andom matux approach may be used in ballistic systems only for sufficiently small openings $N \leq \sqrt{k_{\Gamma} L}$ is required For latger N the scattering becomes deterministic, rather than stochastic, and random matux theory starts to break down

This work was supported by the Dutch Science Foundation NWO/FOM
${ }^{1}$ C W J Beenakker and H van Houten, Phys Rev B 43, 12066 (1991)
${ }^{2}$ O Agam, I Alener, and A Larkin, Phys Rev Lett 85, 3153 (2000)
${ }^{3}$ H -S Sim, and H Schomerus, Phys Rev Lett 89, 066801 (2002), R G Nazmıtdinov, H S Sim, H Schomerus, and I Rotter, Phys Rev B 66, 241302(R) (2002)
${ }^{4}$ G M Zaslavsky, Phys Rep 80, 157 (1981)
${ }^{5}$ S Oberholzer, EV Sukhorukov, and C Schonenberger, Nature (London) 415, 765 (2002)
${ }^{6}$ R A Jalabert, J-L Pichard, and C WJ Beenakker, Europhys Lett 27, 255 (1994)
${ }^{7}$ PG Silvestrov, MC Goolden, and CWJ Beenakker, Phys Rev

Lett 90, 116801 (2003)
${ }^{8}$ The dwell-time distribution is defined with a unform measure in the surface of section of the lead, so that its integial is dinectly proportional to the number of channels The mean dwell time $\tau_{\mathrm{D}}=\pi \hbar / N \delta$ was calculated by W Bauer and G F Bettsch, Phys Rev Lett 65, 2213 (1990)
${ }^{9}$ Dwell times shorter than τ_{0} ate improbable but they may exist for special positions of the two point contacts The probability that a random position permits a transmitled(or reflected) thajectory of duration $t<\tau_{0}$ is $\exp \left[-\lambda\left(\tau_{0}-t\right)\right]$
${ }^{10}$ M G Vavilov and A I Larkın, Phys Rev B 67, 115335 (2003)
${ }^{11}$ M Butuke, Phys Rev Lett 65, 2901 (1990)
${ }^{12} \mathrm{M}$ A Topinka et al , Nature (London) 410, 183 (2001)

