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Noiseless scattering states in a chaotic cavity
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Shol noise in a chaotic cavity (Lyapunov exponent λ, level spacing δ, lineai dimension L), coupled by two
jV-mode point contacts to election reseivons, is studied äs a mcasuie of the ciossovei fiom slochastic quantum
tiansport to deteimmistic classical transport The tiansition pioceeds through the formation ofßilly transmitted
or leflected scattering states, which we construci exphcitly The fully Uansmitted states contnbute to the rnean
cunent 7, but not to the shot-noise powei S We find that these noiseless tiansmission channels do not exist for
NS ^kFL, wheie we expect the landom-matnx result S/2e7= 1/4 Foi /Vä \jkFL we predict a suppiession of
the noise v (kFL/N2)NSIwflK This nonhnear contact dependence of the noise could help to distmguish balhstic
chaotic scattenng from random impunty scattering in quantum transport
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Shot noise can distmguish deteimmistic scatteimg, chai-
actenstic of paiticles, fiom stochastic scattenng, chaiactens-
tic of waves Particle dynamics is deteimmistic A given ini-
tial position and momentum fix the entne tiajectoiy In
particulai, they fix whethei the paiticle will be tiansmitted or
leflected, so the scattenng is noiseless Wave dynamics is
stochastic The quantum uncertamty in position and momen-
tum introduces a probabihstic element mto the dynamics, so
it is noisy

The suppiession of shot noise in a conductoi with deter-
mimstic scattenng was predicted many yeats ago fiom this
qualitative aigument l A bettei undeistandmg, and a quanti-
tative description, of how shot noise measuies the tiansition
fiom paiticle to wave dynamics m a chaotic quantum dot
was put foiward by Agam, Aleinei, and Laikm," and devel-
oped fuithei in Ref 3 The key concept is the Ehienfest time
TE , which is the charactenstic time scale of quantum chaos 4

The noise powei S^exp(— TE/TD) was piedicted to vamsh
exponentially with the latio of TE and the mean dwell time
TD=TrhlNS m the quantum dot (with δ the level spacing
and N the numbei of modes in each of the two pomt contacts
thiough which the cunent is passed) A lecent measuiement
of the N dependence of S is consistent with this piediction
foi TE<TD, although an alternative explanation m teims of
shoit-iange impunty scattering descubes the data equally
well 5

The theoiy of Ref 2 mtioduces the stochastic element by
means of long-range impunty scattenng, and adjusts the
scattenng rate so äs to mimic the effect of a finite Ehienfest
time Heie we take the alternative appioach of exphcitly con-
stiuctmg noiseless channels in a chaotic quantum dot These
aie scattenng states which aie eithei fully tiansmitted 01
fully leflected in the semiclassical hmit They aie not de-
sciibed by landom matnx theoiy6 By deteimming what fiac-
tion of the available channels is noiseless, we can deduce a
piecise uppei bound foi the shot-noise powei Alandom ma-
tnx conjectuie foi the lemaming noisy channels gives an
explicit foim of S (N) We find that the onset of the classical
suppiession of the noise is desciibed not only by the Ehien-
fest time, but by the diffeience of TE and the eigodic time r0,

which we intioduce and calculate in this Rapid Commumca-
tion The lesulting nonhneai dependence of In S on N may
help to distmguish between the competing explanations of
the expenmental data5

We illustiate the constiuction of noiseless scattenng states
foi the two-dimensional bilhaid with smooth confining po-
tential U(x,y) shown in Fig l The outei eqmpotential de-
fines the area m the x-y plane which is classically accessible
at the Feimi eneigy EF—p"r/2m (with pF=fikr the Feimi
momentum) The motion in the closed bilhard is chaotic,
with a Lyapunov exponent λ We assume the bilhard to be
connected a t A = 0 and x = L by two similai pomt contacts to
leads of width Wextended along the ±x dnection

The beam of elections mjected thiough a pomt contact
mto the bilhaid has a cioss section W and tiansverse mo-
menta in the ränge (—pw,pw) The numbei of channels Λ'
~pwW/h in the lead is much smallei than the numbei of

FIG l Selected equipotentials of the electron b i lhaid The outei
equipotential is at EF, the othei equipotentials aie at inciements of
Ο 19ΖΓ/Γ Dashed lines a and b show the sections desciibed in the
text Also shown is a fiux tube of transmitted tiajeclones all ongi
naling fiom a single closed contour in a tiansmission band repie-
senüng the spatial extension of a fully üansmiited scattenng state
The flux tube is wide at the Iwo openings and squee?ed inside Ihe
bilhaid
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F1G 2. Section of phase space at px= · and x = 0, coi-
respondmg to hne a m Fig l. Each dot in this surface of section is
the starüng pomt of a classical trajectory that is transmitted through
the lead at χ —L (black/red), or reflected back ihrough x = 0 (gray/
green) The pomts lie in narrow bands Only the tiajectones with
dwell time t< \2mLIpF are shown.

channels M—pFLlh supported by a typical cross section of
the billiard. While W/L<?1 m general, the ratio PW/PF de-
pends on details of the potential near the point contact. If
pw/pF<^l one speaks of a collimated beam. This is typical
for a smooth potential, while a hard-wall potential typically
has p w~ PF (no collimation). We define rnlm

= m m ( W / L , p w l p F ) and rmm=ma\(W/L,pw/pF).
The classical phase space is four dimensional. By restnct-

ing the energy to EF and taking x = 0 we obtain the two-
dimensional section of phase space shown in Fig. 2. The
accessible values of y and py he in a disc-shaped region of
area A=Nh in this surface of section. Up to factors of oider
unity, the disk has width rmm and length rraax (if coordinate
and momentum are measured in units of L and pF, respec-
tively). In Fig. 2 one has rmm=rmax. Each point in the disc
defmes a classical trajectory that enters the billiard (for posi-
tive px) and then leaves the billiard either through the same
lead (reflection) or through the other lead (transmission). The
pomts lie in narrow bands, which we will refer to äs "trans-
mission bands" and "leflection bands."

It is evident from Fig. 2 that the area A} enclosed by a
typical transmission (or reflection) band j is much less man
A. For an estimate we consider the time t(y,py) that elapses
before transmission. Let tt be the dwell time averaged over
the starting points y, py in a single band. The fluctuations of
t around the average are of the order of the time tw

— mW/pw to cross the point contact, which is typically <äf ; .
As we will see below, the area of the band decreases with tf

äs

-A0exp(-Kt,) if (D

The prefactor Ao = Armm/rmiai depends on the degree of col-
limation. In Ref. 7 the Symmetrie case rmln=rmilx was as-
sumed, when AQ = A.

We now proceed to the construction of fully transmitted
scattering states. To this end we consider a closed contoui C
within a transmission band j. The starting points on the con-
tour define a family of trajectones that form a flux tube in-
side the billiard (see Fig. 1). The semiclassical wave function

(2)

is determined äs usual from the action 8σ and density ρσ that
solve the Hamilton-Jacobi and continuity equations

V-(pV<S) = (3)

N, =

The action is multivalued and the index σ labels the different
sheets. Typically, there are two sheets, one onginating from
the upper half of the contour C and one from the lower half.

The requirement that φ is single valued äs one wmds
around the contour imposes a quantization condition on the
enclosed area,

(4)

The increment 1/2 accounts for the phase shift acquired at
the two turning points on the contour. The quantum number
n = 0,1,2, . . . is the channel index. The laigest value of n
occurs for a contour enclosing an area Ar The number of
transmission channels Nf within band j is therefore given by
A!/h, with an accuracy of order unity. In view of Eq. (1) we
have

λ ί , ) fort,<T,:, (5a)

for tj>rE. (5b)

The time

T£=\~ 1ln(^l 0//i) = \~ 1 ln(yVrm m/rm a x), (6)

above which there are no fully transmitted channels, is the
Ehrenfest time of this problem.

By decomposing one of these Nt scattering states into a
given basis of transverse modes in the lead one constructs an
eigenvector of the transmission matiix product fi1". The cor-
responding eigenvalue TJf„ is equal to unity with exponential
accuracy in the semiclassical limit nf> l . Because of the de-
generacy of this eigenvalue any linear combination of eigen-
vectors is again an eigenvector. This mamfests itself in our
construction äs an arbitranness in the choice of C.

We observe in Fig. l that the spatial density profile
p(x,y) of a fully transmitted scattering state is highly non-
uniform. The flux tube is broad (width of order W) at the two
openings, but is squeezed down to veiy small width inside
the billiaid. A similar effect was noted7 in the excited states
of an Andreev billiard (a cavity connected to a superconduct-
or). Followmg the same argument we estimate the minimal
width of the flux tube äs Wmm—L\JNtlkrL.

The total number

P(t)dl (7)
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FIG. 3. Dwell-time distribution for the billiard of Fig. 1. Elec-
trons at the Fermi energy are injected through the left lead. Time is
in units of mLlpP. Inset: the same data on a semilogarilhmic scale
with larger bin size of the histogram. Three characteristic time
scales are Seen: tw, TO, and rD.

of fully transmitted and reflected channels is determined by
the dwell-time distribution P (i)·8 Figure 3 shows this distri-
bution in our billiard. One sees three different time scales.
The nanOw peaks represent individual transmission (reflec-
tion) bands. They consist of an abrupt Jump followed by an
exponential decay with a time constant tw. These exponen-
tial tails correspond to the borders of the bands, where the
trajectory bounces many times between the sides of the point
contact. If we smooth P (t) over such short time intervals, an
exponential decay with time constant το=πΛ,/Νδ is ob-
tained (inset). The decay Starts at the so called "ergodic
time" TO. There are no trajectories leaving the cavity for i
<TO. So the smoothed dwell-time distribution has the form

= rD
1exP[(r0-f)/rD]ö(i-r0), (8)

with ö(f) the unit step function.
In order to find TO we consider Fig. 4, where the section

of phase space along a cut through the middle of the billiard
is shown (line b in Fig. 1). It is convenient to measure the
momentum and coordinate along b in units of pF and L. The

l

l

-S? \

BF j

injected beam crosses the section for the first time over an
area Oimlial of size rnuxXrmm=hN/pFL. (Fig. 4 has rram

"'"maxi but me estimates hold for any rmm<rmm<l.) Further
crossings consist of increasingly more elongated areas. The
fifth crossing is shown in Fig. 4. The flux tube intersects line
b in a few disjunct areas Ot, of width rmllle~x' and total
length rmaxe

x'. (Due to conservation of the integral φρ-dr
enclosing the flux tube, the total area Σ;0; decreases only
when particles leave the billiard.) The typical Separation of
adjacent areas is (rmaxe

x')~1. To leave the billiard (through
the right contact) without a further crossing of b a particle
should pass through an area 0 f i n ai=rm a xXrm i n. This is highly
improbable9 until the Separation of the areas O; becomes of
order /"max, leading to the ergodic time

τη = λ In r -2
(9)

The ergodic time varies from TOS\ ' for rraax= l to TO

= \~1\n(kFL/N) for rmjn— '"max· The overlap of the areas O]

and Of,nji is the mapping of the transmission band onto the
surface of section b. It has an area pFLr^ne^Kl

=-4('"min/'"max>~X', leading to Eq. (1).
Substituting Eq. (8) into Eq. (7) we arrive at the number

N0 of fully transmitted and reflected channels:

(10)

(Π)

There are no fully transmitted or reflected channels if TE

< TO, and hence if N< \jkFL. Notice that the dependence of
TE and TO separately on the degree of collimation drops out
of the difference TE~ TO. The number of noiseless channels
is therefore insensitive to details of the confining potential.
An Ehrenfest time <*\\\(N2lkFL) has appeared before in con-
nection with the Andreev billiard,10 but the role of collima-
tion (and the associated finite ergodic time) was not consid-
ered there.

Equations (5) and (8) imply that the majority of noiseless
channels group in bands having N,>1, which justifies the
semiclassical approximation. The total number of these
noiseless bands is (N — Ng)/\TD, which is much less than
both N — N0 and N0. Because of this inequality the relatively
short trajectories contributing to the noiseless channels are
well separated in phase space from other, longer trajectories
(cf. Fig. 2).

The shot-noise power S is related to the transmission ei-
genvalues by1 1

-0.5 0 0.5
Tk(l-Tk), (12)

FIG. 4. Section of phase space in the middle of the billiard,
along line b in Fig. 1. The subscript || mdicates the component of
coordinate and momentum along this line. Elongated black areas O,
show the positions of the fiflh crossing of the injected beam with
this surface of section. The area Oinma| is the position of the firsl
crossing. Points inside Ofilui leave the bil l iard without further cross-
ing of line b. For times less than the ergodic lime TO there is no
intersection belween O, and ΟΆηΛ.

with / the time-averaged current and g = *LLTk the dimen-
sionless conductance. The N0 fully transmitted or reflected
channels have Tk= l or 0, hence they do not contribute to the
noise. The remaining N — N0 channels contribute at most 1/4

per channel to Sg/2e7. Using that g=N/2 for l arge N, we

arrive at an upper bound for the noise power S<e7(i
- N o / N ) .
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For a moie quantitative descnption of the noise powei we
need to know the distiibution P(T) of the tiansmission ei-
genvalues foi the N—N0 noisy channels, which cannot be
descubed semiclassically We expect the distiibution to have
the same bimodal foim P (T) = ir~lT~ m( l - T) ~ I /2 äs m the
case yV0 = 0 6 This expectation is motivated by the eaihei
observation that the N0 noiseless channels aie well sepaiated
in phase space fiom the N — N0 noisy ones Usmg this foim
of P (T) we find that the contnbuüon to Sg/2e7 pei noisy
channel equals /ÖT(1 -T)P(1)dT= 1/8, half the maximum
value The Fano factoi F=S/2e7 is thus estimated äs

(13a)

F= -( foi (13b)

This result should be compared with that of Ref 2 F'
= j(kFL)-NS/1Tt'K The mtio F'lF = e\v[(2Nd/Trh\)\n(NI
krL)\ is always close to unity (because N3/Trfi\—N/kFL
«1) But F-\ and F'-\ are entnely diffeient foi N
& \JkrL, which is the televant regime in the expenment5

Theie the N dependence of the shot noise was fitted äs F
= £(1 — tQ/TD) — j(l — constxyV), wheie tQ is some
/V-mdependent time Equation (13) predicts a moie complex
N dependence, a plateau followed by a deciease äs InFa
—N\n(N2/krL), which could be obseivable if the expenment
extends ovei a laigei lange of TV

We mention two othei expenmentally obseivable featuies
of the theoiy piesented heie The leduction of the Fano fac-
toi descubed by Eq (13) is the cumulative effect of many
noiseless bands The appeaiance of new bands with increas-
ing N introduces a fine stiucttue in F(N), consisting of a
senes of cusps with a squaie-ioot singulaiity neai the cusp
The second feature is the highly nonumfoim spatial exten-
sion of open channels, evident in Fig l, which could be
obseived with the scanning tunnelmg micioscopy techmque
of Ref 12 Fiom a more general peispective the noiseless
channels constiucted in this papei show that the landom ma-
tnx approach may be used in balhstic Systems only foi suf-
ficiently small openmgs lkrL is lequned For laiger N
the scattenng becomes determimstic, lathei than stochastic,
and landom matnx theoiy staits to bieak down
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