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Noiseless scattering states in a chaotic cavity
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Shot noise 1n a chaotic cavity (Lyapunov exponent A, level spacing &, linear dimension L), coupled by two
N-mode point contacts to election reservours, 15 studied as a measuie of the ciossover fiom stochastic quantum
transport to detetministic classical transport The transition proceeds through the formation of fully transmtted
or teflected scattering states, which we construct explicitly The fully tansmitted states contribute to the mean
cuttent 7, but not to the shot-noise power S We find that these noiseless ttansmission channels do not exist for
N= \/E;L— wheie we expect the 1andom-matix result S/2¢T=1/4 For N= \/l;Z we predict a supptession of
the nose o (k zL/N*)N¥7"* This nonlinear contact dependence of the noise could help to distnguish ballistic
chaotic scattering from random 1mpuiity scatlermg in quantum transport
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Shot noise can distinguish detetministic scattering, chai-
actenistic of paiticles, fiom stochastic scattering, chatacteiis-
tic of waves Particle dynamics 1s detetministic A given 1ni-
tial posiion and momentum fix the entne tiajectory In
particulai, they fix whether the particle will be tiansmutted or
teflected, so the scattering 1s noiseless Wave dynamics 1s
stochastic The quantum uncertainty m posttion and momen-
tum 1ntroduces a probabilistic element mto the dynamics, so
1t 18 noisy

The suppiession of shot noise m a conductor with deter-
ministic scatteiing was predicted many yeats ago fiom this
qualitative aigument ' A better understanding, and a quanti-
tative description, of how shot noise measuies the tiansition
fiom paiticle to wave dynamics 1 a chaotic quantum dot
was put forward by Agam, Alemet, and Lalkm,2 and devel-
oped further in Ref 3 The key concept 1s the Ehienfest time
&, which 1s the charactenistic tume scale of quantum chaos *
The noise power S«exp(—7z/7p) was piedicted to vanish
exponentially with the 1atio of 7z and the mean dwell time
7p=ah/NS 1 the quantum dot (with &§ the level spacing
and N the numbet of modes 1n each of the two point contacts
through which the curient 1s passed) A i1ecent measurement
of the N dependence of S 1s consistent with this prediction
for rz<<7p, although an alternative explanation in terms of
shott-1ange 1mpurity scattering desciibes the data equally
well ®

The theoty of Ref 2 imtioduces the stochastic element by
means of long-range impuiity scattering, and adjusts the
scattetng rate so as to mumic the effect of a finite Ehienfest
time Heie we take the alternative apptoach of explicitly con-
structing noiseless channels 1 a chaotic quantum dot These
ate scattering states which aie either fully wansmutted ot
fully 1eflected 1n the semiclassical limit They aie not de-
sciibed by 1andom mattix theory ® By determiming what frac-
tion of the available channels 1s noiseless, we can deduce a
precise upper bound for the shot-noise power A random ma-
tix conjecture for the 1emaming noisy channels gives an
explicit form of S(N) We find that the onset of the classical
suppresston of the noise 1s desctibed not only by the Elien-
fest tume, but by the difference of 7 and the ergodic time 7,
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which we mtioduce and calculate 1n this Rapid Communica-
tton The resulting nonlinear dependence of InS on N may
help to distinguish between the competing explanations of
the experimental data ’

We 1llustrate the constiuction of noiseless scattering states
for the two-dimensional billiaid with smooth confining po-
tential U(x,y) shown in Fig [ The outer equipotenttal de-
fines the area in the x-y plane which 1s classically accessible
at the Feimu eneigy Ep= p%/2m (with pp=#kp the Ferm
momentum) The motion 1 the closed bilhard 1s chaotic,
with a Lyapunov exponent A We assume the bilhard to be
connected at 2 =0 and x=L by two simila1 point contacts to
leads of width W extended along the *x dnection

The beam of elections injected thiough a point contact
mto the billiard has a cioss section W and transverse mo-
menta in the range (—pw.pw) The number of channels N
=pwW/% m the lead 1s much smaller than the number of

FIG 1 Selected equipotentials of the electron bilhaid The outes
equipotential 1s at £, the other equipotentials ate at increments of
0 19L; Dashed Imes a and b show the sections desciibed mn the
text Also shown 1s a flux tube of transmitted tiajectones all origi
nating friom a single closed contour m a ttansmission band repie-
senting the spatial extension of a fully tiansmitted scattering state
The flux tube 1s wide at the two openmgs and squeezed mside the
billiard
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FIG 2. Section of phase space at p,= \/pzpwp)z, and x=0, co1-
responding to line @ in Fig 1. Each dot 1 this surface of section 18
the starung point of a classical trajectory that 1s transmutted through
the lead at x=L (black/red), or reflected back through x=0 (gray/
green) The points lie in narrow bands Only the tigjectories with
dwell time ¢<<12mL/pr are shown.

channels M= p .L/#% supported by a typical cross section of
the billiard. While W/L<¢1 m general, the ratio py/ps de-
pends on details of the potential near the point contact. If
pw/pr<l1 one speaks of a collimated beam. This 1s typical
for a smooth potential, while a hard-wall potential typically
has  py=pr (no collimation). We define rp,
=mn(W/L,pw/pr) and rp=max(W/L,pw/pr).

The classical phase space is four dimensional. By restrict-
ing the energy to Ey and taking x=0 we obtain the two-
dimensional section of phase space shown in Fig. 2. The
accessible values of y and p, he in a disc-shaped region of
area A= Nh in this surface of section. Up to factors of order
unity, the disk has width rg,, and length rp,, (if coordinate
and momentum are measured in units of L and py, respec-
tively). In Fig. 2 one has ry,n=r .- Each point in the disc
defines a classical trajectory that enters the billiard (for posi-
tive p,) and then leaves the billiard either through the same
lead (reflection) or through the other lead (transmussion). The
points lie in narrow bands, which we will refer to as “trans-
mission bands” and “reflection bands.”

It is evident from Fig. 2 that the area A, enclosed by a
typical transmussion (or reflection) band j is much less than
A. For an estimate we consider the time #(y,p,) that elapses
before transmussion. Let ¢, be the dwell time averaged over
the starting points y, p, i a single band. The fluctuations of
t around the average are of the order of the time 7y
=mW/py to cross the point contact, which is typically <z, .
As we will see below, the area of the band decreases with 7,
as

A,=Agexp(—N\t,) i £, >1/N ty. ()
The prefactor Ag= Arn/rma depends on the degree of col-
limation. In Ref. 7 the symmetric case r =/ mn Was as-
sumed, when A= A.
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We now proceed to the construction of fully transmitted
scattering states. To this end we consider a closed contour C
withim a transmission band ;. The starting points on the con-
tour define a family of trajectories that form a flux tube -
side the billiard (see Fig. 1). The semiclassical wave function

w<x,y>=§ Vo (x,y) expliS,(x,y)/#] @)

1s determined as usual from the action S, and density p,, that
solve the Hamilton-Jacobi and continuity equations

|\VS)2=2m(E —U), V-(pVS)=0. 3)

The action is multivalued and the index o labels the different
sheets. Typically, there are two sheets, one originating from
the upper half of the contour C and one from the lower half.

The requirement that ¢ is single valued as one winds
around the contour imposes a quantization condition on the
enclosed area,

3£p),dy=(n+1/2)h. 4)
c

The increment 1/2 accounts for the phase shift acquired at
the two turning points on the contour. The quantum number
n=0,1,2,... is the channel mdex. The laigest value of n
occurs for a contour enclosing an area A,. The number of
transmussion channels N, within band ; 1s therefore given by
A, /h, with an accuracy of order unity. In view of Eq. (1) we
have

N,=(Ag/h)exp(—At,) fort, <7, (5a)
N,=0 for t,>7p. (5b)

The time
7e=N"1n(Ag /) =N (N pn/ i) » 6)

above which there are no fully transmitted channels, is the
Ehrenfest time of this problem.

By decomposing one of these N, scattering states into a
given basis of transverse modes in the lead one constructs an
eigenvector of the transmission matrix product ¢#£7. The cor-
responding eigenvalue 7, , is equal to unity with exponential
accuracy in the semiclassical limit 73 1. Because of the de-
generacy of this eigenvalue any linear combination of eigen-
vectors is again an eigenvector. This manifests itself in our
construction as an arbitrarimess m the choice of C.

We observe m Fig. 1 that the spatial density profile
p(x,y) of a fully transmitted scattering state is highly non-
uniform. The flux tube is broad (width of order W) at the two
openings, but 1s squeezed down to very small width inside
the billiard. A similar effect was noted’ in the excited states
of an Andreev billiard (a cavity connected to a superconduct-
or). Following the same argument we estimate the minimal
width of the flux tube as W, =LyN,/krL.

The total number

No= N,:NfT'P(z)dz %
] 0
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FIG. 3. Dwell-time distribution for the billiard of Fig. 1. Elec-
trons at the Fermi energy are injected through the left lead. Time is
in units of mL/p . Inset: the same data on a semilogarithmic scale
with larger bin size of the histogram. Three characteristic time
scales are seen: ty, 7g, and 7p.

of fully transmitted and reflected channels is determined by
the dwell-time distribution P(t).8 Figure 3 shows this distri-
bution in our billiard. One sees three different time scales.
The narrow peaks represent individual transmission (reflec-
tion) bands. They consist of an abrupt jump followed by an
exponential decay with a time constant 7, . These exponen-
tial tails correspond to the borders of the bands, where the
trajectory bounces many times between the sides of the point
contact. If we smooth P(¢) over such short time intervals, an
exponential decay with time constant 7,=7h/NS is ob-
tained (inset). The decay starts at the so called “ergodic
time” 7. There are no trajectories leaving the cavity for ¢
<7y. So the smoothed dwell-time distribution has the form

P(f)=7'1315’(1)[(7'0“”/70]9(1‘_To)’ 8)

with 8(t) the unit step function.

In order to find ¢ we consider Fig. 4, where the section
of phase space along a cut through the middle of the billiard
is shown (line b in Fig. 1). It is convenient to measure the
momenturn and coordinate along b in units of py and L. The
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FIG. 4. Section of phase space in the middle of the billiard,
along line b in Fig. 1. The subscript | indicates the component of
coordinate and momentum along this linc. Elongated black areas O,
show the positions of the fifth crossing of the injected beam with
this surface of section. The area O, is the position of the first
crossing. Points inside Oy, leave the billiard without further cross-
ing of line b. For times less than the ergodic time 7y therc is no
intersection between O, and Oy, -
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injected beam crosses the section for the first time over an
area Oyl of size rmdxerm:hN/pFL- (Flg 4 has ropp
= ax » Dut the estimates hold for any 7, <rmax<<1.) Further
crossings consist of increasingly more elongated areas. The
fifth crossing is shown in Fig. 4. The flux tube intersects line
b in a few disjunct areas O,, of width rome M and total
length r,,.eM. (Due to conservation of the integral $p-dr
enclosing the flux tube, the total area 2,0, decreases only
when particles leave the billiard.) The typical separation of
adjacent areas is (rp.e™) L. To leave the billiard (through
the right contact) without a further crossing of b a particle
should pass through an area O g;,,= 7 max X F'pun - This is highly
improbable’ until the separation of the areas O , becomes of
order r,,, leading to the ergodic time

mo=A"lnr_2 9)

max-

The ergodic time varies from 7o<A~! for rp,=1 to 7,
=\ " n(kpL/N) for rpin=rmax- The overlap of the areas O ;
and Oy, 18 the mapping of the transmission band onto the
surface of section b. It has an area p FLr,znine‘)"
= A min/Faae ™, leading to Eq. (1).

Substituting Eq. (8) into Eq. (7) we arrive at the number
Ny of fully transmitted and reflected channels:

No=NO(7g—1p)[1 — el 7)/™D], (10)

p— 1o=N"Un(N*/kzL). (11)

There are no fully transmitted or reflected channels if 7
<7y, and hence if N< \/kF—L . Notice that the dependence of
7 and 7¢ separately on the degree of collimation drops out
of the difference 7z~ 7. The number of noiseless channels
is therefore insensitive to details of the confining potential.
An Ehrenfest time ccIn(N*/kgL) has appeared before in con-
nection with the Andreev billiard,10 but the role of collima-
tion (and the associated finite ergodic time) was not consid-
ered there.

Equations (5) and (8) imply that the majority of noiseless
channels group in bands having N,> 1, which justifics the
semiclassical approximation. The total number of these
noiseless bands is (N—Ng)/\7p, which is much less than
both N— Ny and Ny. Because of this inequality the relatively
short trajectories contributing to the noiseless channels are
well separated in phase space from other, longer trajectories
(cf. Fig. 2).

The shot-noise power § is related to the transmission ei-
genvalues by!!

N
S=2elg™' > T(1—T), (12)
k=1

with 7 the time-averaged current and g=2¥,7; the dimen-
sionless conductance. The Ny fully transmitted or reflected
channels have 7; =1 or 0, hence they do not contribute to the
noise. The remaining N — N, channels contribute at most 1/4

per channel to Sg/2el. Using that g =N/2 for large N, we

arrive at an upper bound for the noise power S<el(l
—No/N).
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For a more quantitative description of the noise power we
need to know the distitbution P(7) of the transmission ei-
genvalues for the N— N, noisy channels, which cannot be
described semuclassically We expect the distiibution to have
the same bimodal form P(7)=#"'T" Y2(1 = 7372 as n the
case No=0 ¢ This expectation 1s motivated by the eatlier
observation that the N noiseless channels aie well separated
in phase space fiom the N—Ny noisy ones Using this form

of P(7) we find that the conttibution to Sg/2el per noisy
channel equals fé’f(l —DHP(DdT=1/8, half the maximum
value The Fano factor F=S/2e7 1s thus estimated as

1
F:Z for N= kgL, (13a)

F= i—(LrL/Nz)N‘s’““ for Nz JkpL (13b)

This result should be compared with that of Ref 2 F’
=4 (kpL) NN The 1atio F'/F=exp[(QN&mhiN)In(N/
ArL)] 18 always close to unity (because N &/ mhN=N/kpL
<]) But F—% and F'—1 are entuely different for N
= kprL, which 1s the 1elevant regime i the expenment5
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There the N dependence of the shot noise was fitted as F
=i(I—ty/7p)=¢(1—constXN), wheie 1, 15 some
N-independent time Equation (13) predicts a more complex
N dependence, a plateau followed by a deciease as In Fe
—N In(Nz/er), which could be observable 1f the expetiment
extends over a laiger 1ange of N

We mention two other experimentally obsetvable featuies
of the theory presented hete The 1eduction of the Fano fac-
tor desciibed by Eq (13) 1s the cumulative effect of many
noiseless bands The appeatance of new bands with increas-
mg N troduces a fine sttuctwe m F(N), consisting of a
seites of cusps with a squaie-100t singulanty neai the cusp
The second feature 1s the highly nonuniform spatial exten-
sion of open channels, evident m Fig 1, which could be
obsetrved with the scanning tunneling mictoscopy technique
of Ref 12 Firom a more general peispective the noiseless
channels constructed in this paper show that the tandom ma-
trix approach may be used i ballistic systems only for suf-
fictently small openings N=< \/ﬁ 1s tequued For laiger N
the scattering becomes deterministic, 1ather than stochastic,
and 1andom matux theoiy starts to break down
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