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Quantum-to-classical crossover of mesoscopic conductance fluctuations
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Wc cnlcuhte ihc s>stcm si/c o \ e i \\ ive length (M) dependence of sample to sample conduclince fiuciua
üons usmg the open kicked l ü t i t o i to modcl chiotic scutcung in a balhstic quantum dot coupled hy two
yV modc point contacls to elecuon leseivons Both i l u l l y quantum mechamcal and a scmiclassical cilculation
aic picscnted ind iound to be in good igiecment The mean squaied conductince fluctuations leich the
univeisal quantum hmit of undom matux theoiy foi simll Systems Foi laige Systems they mciease ^M7 at
fixed mean dwell tunc ro-rMIN The univeisal quantum fluctuations dommate ovei the nonumveisal classicü
fluctuations if N< \[M When expiessed äs a laüo of Urne scales the quantum to classical ciossovei is go\
emed by the latio öl Ehienfest time and ergodic Urne
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I INTRODUCIION

Sample to sample fluctuations of the conductance of dis
oideied Systems have a univeisal legime in which they aie
independent of the mean conductance The lequnement foi
these unneisal conductance fluctuations1 Ί is Chat the sample
size should be small compaied to the locahzation length The
mean conductance is then much laigei than the conductance
quantum e~"/h

The same condition applies to the univeisahty of conduc
tance fluctuations in balhstic chaotic quantum dots 1 4 al
though theie is no locahzation in these Systems Random
matnx theoiy (RMT) has the univeisa l hmit

l
lim vaiG= — (11)

foi the vanance of the conductance G m units of e~*/h Heie
N is the numbei of modes tiansmitted thiough each of the
two balhstic pomt contacts that connect the quantum dot to
election leseivons Smce the mean conductance ( G ) —N/2
the condition foi univeisahty lemams that the mean conduc
tance should be laige compaied to the conductance quantum

In the piesent papei we wi l l show that theie is actually an
uppei hmit on N beyond which RMT bieaks down in a
quantum dot and the unneisahty of the conductance ftuctua
tions is lost Smce the width W of a pomt contact should be
small compaied to the size L of the quantum dot in oidei to
have chaotic scattenng a timal lequnement is N^M
wheie M is the numbei of tiansveise modes in a cioss section
of the quantum dot (In two dimensions, N— W/\r and M
— LI\Y with λ ( the Feimi wavelength ) By considenng the
quantum to classical ciossovei we anive at the moie sinn
gent lequnement

(12)

with λ the L)apuno\ exponcnt and rei„ the eigodic Urne öl
ihe classical chaotic dynamics The lequnemenl is moie
stnngent than N-^M becau.se t>pical ly λ ' and rc „ aie

both equal to the time of flight TO acioss the System so the
exponential factoi in Eq (l 2) is not fai f iom unity

Expiessed in teims of time scales the uppei hmit in Eq
(l 2) says that rei„ should be laigei than the Ehienfest time56

TF=max Ο λ ,V
The condition τίιί>τΕ which we find foi the univeisahty of
conductance fluctuations is much moie stnngent than the
condition TD>TF foi the vahdity of RMT founci in othei
contexts 3~'' Heie το

!=(ΜΙΝ)τ0 is the mean dwell time m
the quantum dot which is ^"rui in any chaotic System

The outline of this papei is äs tollows In See II we
descnbe the quantum-mechanical model that we use to cal
culate vai G numencally which is the same stioboscopic
model used m pievious mvestigations of the Ehienfest
t ime9 1 1 14 The data aie mteipieted semiclassically in See
III leading to the ciossovei cntenon (l 2) We conclude in
See IV

II STROBOSCOPIC MODEL

The physical System we have in mind is a balhstic (clean)
quantum dot m a two dimensional election gas connected by
two balhstic leads to election leseivons While the phase
space of this System is foui dimensional it can be leduced to
two dimensions on a Pomcaie suiface of section

14 ^0 17-19 .

!·> 16 The
open kicked lotatoi is a stioboscopic model with
a two dimensional phase space We summanze how this
model is constmcted followmg Ref 11

One staits fiom the closed System (without the leads) The
kicked lotatoi descubes a paiticle mo\mg along a cncle
kicked peiiodically at time inteivals TO We set to unity ihe
stioboscopic time TO and the Plank constant ti The stiobo
scopic time evolution of a wa\e funct ion is gi\en by the
Floquet opeiatoi T wh ich can be lepiesented by an M
Χ Λ / t imtaiy symmetnc m a t i i x The e \ e n integei M dehnes
the eHectne Planck constant \i^\\— UM In the disciete cooi
dmate lepiesentation (v =inlM ;/i = 0 1 M—i) the
matux elements of J- die given by
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F m = M U2e '^e'iTMS^ χ > ^ (2 l)

wheie S is the map geneiating tunction,

(22)

and K is the kickmg stiength
The eigenvalues exp( — ιέ,,,) of-Fdefine the quasieneigies

ε „ e (0 2rr) The mean spacing 2rr/M of the quasieneigies
plays the lole of the mean level spacing δ in the quantum
dot

To model a pan of N mode balhstic leads, we impose
open boundaiy conditions m a subspace of Hilbeit space
lepiesented by the mdices m^ The subscupt n
= 1,2, N labels the modes and the supeiscnpt a= 1,2 la
bels the leads A 2NXM piojection matiix P descubes the
couplmg to the balhstic leads Its elements aie

1 r

I !

l if m = ne{m(

n

a>}

0 otheiwise
(23)

The mean dwell time is το = Μ/2Ν (in units of TO)
The matnces P and ^togethei deteimme the quasieneigy

dependent scatteiing matux

The symmetiy of J^ensuies that S is also symmetnc, äs it
should be in the piesence of time-ieveisal symmetiy By
giouping togethei the N mdices belonging to the same lead
the 2NX2N matux S can be decomposed mto foui sub
blocks contaming the NXN tiansmission and leflection ma
tnces,

(25)

The conductance G (in units of e2lh) follows fiom the Lan
dauei foimula

? = Ti «r (26)

The open quantum kicked lotatoi has a ciassical limit
descnbed by a map on the toius {A p|modulol} The ciassi-
cal phase space, includmg the leads, is shown in Fig l The
map lelates x,p at time k to \',p' at time k+l

p' = S(x',x) p= S(x' x) (27)
äx' dx

The ciassical mechanics becomes fully chaotic foi K 3^7,
with Lyapunov exponent λ^\η(Κ/2) Foi smallei K the
phase space is mixed contaming both legions of chaotic and
of legulai motion We wi l l lestiict ouiselves to the f u l l y cha-
otic legime in this papei

III NUMI RICAI RESULfS

To calculate the conductance (26) we need to mveit the
MX M matux between squaie biackets in Eq (24) We do
this numencally using an iteiative pioceduie " The iteialion

tv

«\

& ί

FIG l Classical plnse space of the open kicked rotatoi The
dashed Imes indicate the two leads (shown foi the case TD 5)
Inside each lead we plot the init ia l and final cooidtnates of tiajec
tones which aie innsmitted fiom the lelt to the nght lead after at
mosl thiee iteiations (with K = 1 5) The pomts clustei along nar
iow tnnsmission bands

can be done efficiently using the fast Founei-tiansfoim algo
nthm to calculale the application of J-to a vectoi The time
lequned to calculate 5 scales äs M 2 lnM which foi laige M
is quickei than the M1 scalmg of a dnect mveision The
memoiy leqimements scale äs M, because we need not stoie
the füll scatteiing matiix to obtam the conductance

We distmguish two types of mesoscopic ftuctuations in
the conductance The fiist type appeais upon vaiymg the
quasieneigy ε Ιοί a given scatteiing matux 5(ε) Smce these
fluctuations have no ciassical analog [the classicai map (2 7)
bemg ε mdependent], we lefei to them äs quantum fluctua
tions The second type appeais upon vaiymg the position of
the leads so these mvolve vanation of the scatteiing matiix
at fixed ε We i efei to them äs sample to sample fluctua
tions They have both a quantum mechamcal component and
a ciassical analog One could intioduce a thnd type of fluc
tuations mvolvmg both vanation of ε and of the lead posi
tions We have found (äs expected) that these aie statistically
equivalent to the sample to-sample fluctuations at fixed ε so
we need not distmguish between fluctuations of type 2 and 3

We have calculated the vanance vai G = (G~) — (G)" of
the conductance eithei by vaiymg ε at fixed lead positions
(quantum fluctuations) 01 by vaiymg both ε and lead posi
tions (sample to sample fluctuations) Smce the quantum m
teiteience pattein is completely ditfeient only toi eneigy
vauations oi oidei of the Thouless eneigy l/ro we choose a
numbei TD of equal ly spated values of ε in the i n t e i v a l
(02π) We take ten d i f l e i e n t lead positions, landomly lo
cated at the \ axis in Fig l To investigate the quantum to
ciassical ciossovei we change /i t i r =l/M while keepmg the
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FIG. 2. Variance of the conductance flucluations obtamed nu-
mencally by varying ε with fixed iead positions. Error bars indicate
the scatter of values oblained for different Iead positions. Results
are shown äs a function of l//;eH = M, for two values of the dwell
Urne TD = M/2N. The dashed line is the RMT prediction var G

dwell time rD = MI2N constant. The results are plotted in
Fiss. 2 and 3.

IV. INTERPRETATION

We Interpret the numerical data by assuming that the vari-
ance of the conductance is the s um of two contributions: a
universal quantum-mechanical contribution VRMT given by
random-matrix theory and a nonuniversal quasiclassical con-
tribution Vd determined by sample-to-sample fluctuations in
the classical Iransmission probabilities.

The RMT contribution equals3'4

Vn ΜΗ— g , (4.1)

in the presence of time-reversal symmetry. The classical con-
tribution is calculated from the classical map (2.7), by deter-
mining the probability f i _ 2 °f a particle injected randomly
through Iead l to escape via Iead 2. Since the conductance is
given semiclassically by GC\ = NP{_,2, we obtain

V d =/V 2 var (4.2)
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FIG 3 Same äs Fig. 2, but now for an ensemblc in which the
Iead positions and thc quasiencrgy are both vaned The dashed lincs
are thc sum öl thc RMT value (4 . I ) and thc classical rcsult (4.2).
Results are shown foi th icc values of thc k ick ing sticngth K Opcn
Symbols are foi the dwell Urne TD= 10 and closcd ones foi TD

= 20
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FIG. 4. Variance of the classical fluctuations of the transmission
probability P\ — i upon changcs of Iead positions, calculated nu-
merically from the map (2.7). The data are shown for four values of
the dwell time TD , äs a function of the Lyapunov exponent λ
= ln(Ä72). The dotted hnes are the analytical prediction (4.3), with
fit parameters c= 1.6 and Te,„ = 0.68 (the same for all data sets).

We plot var G = VRMT+ Vci in Fig. 3 (dashed curves), for
comparison with the results of our füll quantum-mechanical
calculation. The agreement is excellent.

We now would like to investigate what ratio of time
scales governs the crossover from quantum to classical fluc-
tuations.

To estimate the magnitude of the sample-to-sample fluc-
tuations in the classical transmission probability, we use re-
sults from Ref. 6. There it was found that the starting points
(and end points) of transmitted trajectories are not homoge-
neously distributed in phase space. Instead, they cluster to-
gether in nearly parallel, narrow bands. These transmission
bands are clearly visible in Fig. 1. The largest band has an
area Anu^=A0e~XTae determined by the ergodic time reig.
This is the time required for a trajectory to explore the whole
accessible phase space. The values of relg and AQ depend on
the degree of collimation of the beam of trajectories injected
into the System.6 For our model, without collimation, one has
Teig of order unity (one stroboscopic period) and A0

— (N l M ) 2 . The typical transmission band has an area
A 0 e~ X 7 / ) which is exponentially smaller than Amwi (since
rD=M/2N>rerg).

As the position of the Iead is moved around, transmission
bands move into and out of the Iead. The resulting fluctua-
tions in the transmission probability P{ _^2

 are dominated by
the largest band. Since there is an exponentially large num-
ber eKTr> of typical bands, their fluctuations average out. The
total area in phase space of the Iead is ΑίΐΆά=Ν/Μ, so we
estimate the mean-squared fluctuations in /Ί_2 at

var (4.3)

with c and Tel„ of order unity. We have tested this functional
dependence numerically for the map (2.7), and find a reason-
able agreement (see Fig. 4). Both the exponential depen-
dence on λ and the quadratic dependence on rD = MI2N are
consistenl with the data. We find Te,„ = 0.68 of order unity, äs
expected.

Equations (4.2) and (4.3) imply

var G= (4.4)
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FIG 5 Same data äs in Fig 3 lescaled to show the approach to
a single limitmg cutve m ihe laige dwcll Urne limit The solid hne is
calculated fiom Eq (44), with the same paiameteis c=\ 6, ταί,
= 068 äs m Fig 4

In Fig 5 we plot the same data äs in Fig 3, but now äs a
function of (N4/M2)e~2XTe"' We see that the functional de-
pendence (44) is appioached toi laige dwell times

The quantum fluctuations of RMT dommate ovei the clas-
sical fluctuations if N2 vai P\^2
(4 3), this amounts to the condition

Usmg the estimate

rF (4 5)

that the eigodic time exceeds the Ehienfest time Notice that
condition (45) is always satisfied if N2<M= l//zeff This
agiees with the findings ot Ref 6 that the bieakdown of
RMT staits when /Vä \ΪΜ

V. CONCLUSIONS

In summaiy, we have piesented both a fully quantum-
mechanical and a semiclassical calculation of the quantum-
to-classical ciossovei fiom umveisal to nonuniveisal con-
ductance fluctuations The two calculations aie in veiy good
agieement, without any adjustable paiametei (compaie data
points with cuives in Fig 3) We have also given an analyti-
cal appioximation to the numeiical data, which allows us to
deteimme the paiametnc dependence ot the ciossovei

We have found that univeisahty ot the conductance fluc-
tuations lequues the eigodic time reie to be laigei than the
Ehienfest time rc This condition is much moie stimgent
than the condition that the dwell time TD should be laigei
than TE, found pieviously foi univeisahty of the shot noise
m a quantum dot 6 1 0 " The univeisahty of the excitation gap
m a quantum dot connected to a supeiconductoi is also gov-
eined by the latio TD/TE lathei than reig/TC,

. ι , r . i i i i , rr _ , 12

57-9 as is the
univeisahty of the weak-locahzation effect 1 2 1 3 These two
piopeities have in common that they lepiesent ensemble av-
eiages, lathei than sample-to-sample fluctuations

We piopose that what we have found heie foi the conduc-

tance is genenc foi othei tianspoit piopeities That the
bieakdown of RMT with incieasmg TC occuis when TL

>TD foi ensemble aveiages and when TC>Tets foi the fluc-
tuations This has immechate expenmental consequences, be-
cause it is much easiei to violate the condition rL> Te,e than
the condition TE>TD

To test this pioposal, an obvious next step would be to
deteimme the latio ot time scales that govein the bieakdown
of univeisahty of the fluctuations m the supeiconducting ex-
citation gap The numeiical data m Refs 14 and 21 weie
mteipieted in teims of the latio T L / T D , but an alternative
descnption m teims of the latio r£/r e i g was not consideied

One final lemaik about the distmction between classical
and quantum fluctuations (explamed in See III) is as fol-
lows It is possible to suppiess the classical fluctuations en-
tnely, by vaiymg only the quasieneigy at fixed lead posi-
tions In that case we would expect the bieakdown of
univeisahty to be govemed by rD/rc mstead of Te i g/T£

Oui numeiical data (Fig 2) clo not show any systematic de-
viation fiom RMT, piobably because we coulcl not leach
sufficiently laige Systems in oui Simulation

l Note added

Oui final lemaik above has been cnticized by Tacquod
and Sukhoiukov 22 They aigue that the numeiical data of Fig
2 (and similai data of then own) do not show any systematic
deviation fiom RMT because quantum fluctuations lemam
umveisal if TF>TD Then aigument lehes on the assump-
tion that the effective RMT ot Ref 6 holds not only toi the
classical fluctuations (as we assume heie), but also foi the
quantum fluctuations The ettective RMT says that quantum
fluctuations aie due to a numbei Ncii^Ne~T>Ιτ» of tiansmis-
sion channels with a RMT distubution Univeisahty of the
quantum fluctuations is then guaianteed even if N&K<N, as
long as /Veff is st i l l laige compaied to unity

This hne ot leasomng, if puisued tuithei, contiadicts the
estabhshed theoiy1 2 n of the r£ dependence of weak local-
ization RMT says that the weak-locahzation conection öG
= - j is independent ot the numbei of channels ^ 4 Validity
of the effective RMT at the quantum level would theiefoie
imply that weak locahzation temains umveisal if rr> το , as
long as Ne~T''~n>i This contiadicts the lesult 8G

T» of Rets 12 and 13
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