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Quantum-to-classical crossover of mesoscopic conductance fluctuations
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We cnlculate the system size over wavelength (M) dependence of sample to sample conductnce fluctua
tions using the open hicked rotuor to model chiotic scatteiing in a ballistic quantum dot coupled by two
N mode point contacts to election 1eservours Both 1 fully quantum mechanical and a semiclassical calculation
aic piesented nd found to be in good agiecment The mean squated conductince fluctuations teich the
untversal quantum hmit of random matuix theory for smnll systems For laige systems they nciease M~ at
fixed mean dwell ime 7, M/N The universal quantum fluctuations dommate over the nonunn ersal classic il
fluctuations 1f N<< \W When expiessed as a 1atio of ume scales the quantum to classical ciossover 1s gos

eined by the 1atio of Ehienfest time and ergodic time
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I INTRODUCTION

Sample to sample fluctuations of the conductance of dis
ordered systems have a univeisal 1egime m which they aie
mdependent of the mean conductance The iequitement fo
these uni eisal conductance fluctuations’ ” 1s that the sample
size should be small compaied to the localization length The
mean conductance 15 then much laiger than the conductance
quantum e /h

The same condition applies to the untveisality of conduc
tance fluctuations m ballistic chaotic quantum dots ** al
though theie 1s no localization 1 these systems Random
mattix theoty (RMT) has the umversal limt

1
IimvaiG= = (11
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for the vatiance of the conductance G n units of ¢’/h Here
N 1s the number of modes tiansmutted thiough each of the
two ballistic pomnt contacts that connect the quantum dot to
election 1eseivons Since the mean conductance (G)=N/2
the condition for universality remains that the mean conduc
tance should be laige compaied to the conductance quantum

In the present paper we will show that there 1s actually an
uppet lmmit on N beyond which RMT bieaks down 1n a
quantum dot and the unn ersality of the conductance fluctua
trons 1s lost Since the width W of a point contact should be
small compaied to the size L of the quantum dot 1n oider to
have chaotic scatteting a tinvial requnement 1s N<M
whete M 1s the number of tiansveise modes n a ctoss section
of the quantum dot (In two dimensions, N=W/kr and M
=[/\r with A the Fetmu wavelength ) By consideting the
quantum to classtcal ciossover we anrve at the more stiin
gent tequirement

r ]
<N M ! (12)
with N the Lyapunoy exponent and 7., the ergodic time of
the classical chaotic dynamics The requuement 1s more

stigent than N<M because typically X ' and 7., ae
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both equal to the time of flight 7y acioss the system so the

exponential tactor 1 Eq (1 2) 1s not far from unity
Expiessed 1n teims of time scales the upper limit m Eq

(1 2) says that 7., should be larger than the Ehientest time® 6

5

= ox "1 N 13
Tp=max s (13)

The condition 7, > 7 which we find for the universahity of
conductance fluctuations 1s much mote stingent than the
condition 7> 7 for the validity of RMT tound i othel
contexts 1> Hete 7~ (M/N) 7y 15 the mean dwell time m
the quantum dot which 1s > 7, 11 any chaotic system

The outhine of tlus paper 1s as tollows In Sec II we
desciibe the quantum-mechanical mode! that we use to cal
culate vat G numerically which 1s the same stioboscopic
model used 1 pievious investigations of the Ehtenfest
tme ? ! 1* The data are mteipreted semiclassically m Sec
II leading to the ciossover ctiterion (1 2) We conclude m
Sec IV

II STROBOSCOPIC MODEL

The physical system we have in mund 1s a ballistic (clean)
quantum dot n a two dimensional election gas connected by
two ballistic leads to election 1eservous While the phase
space of this system 1s four dimensional it can be teduced to
two dimensions on a Poincate suiface of section ' The
open kicked 1otator? 't 1470 =195 a stioboscopic model with
a two dimensional phase space We summatize how this
model 1s constiucted following Ref 11

One staits fiom the closed system (without the leads) Ihe
kicked 1otator describes a patticle moving along a cucle
kicked petiodically at time mtervals 7, We set to unity the
stioboscopic time 7y and the Plank constant 7 The stiobo
scopte time evolution of a wave function 15 gnen by the
[Moquet operator F which can be 1epiesented by an M
XA unttaty symmettic mattix The even mteger M defines
the effectin e Planck constant /i ,— /M In the disciete cool
dinate 1eptesentation (v =m/M =01 M—1) the
matiix elements of F aie given by
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whete S 1s the map genetating tunction,

SV )= =)= (K87 (cos 2y’ +cos 2 ma)
(22)

and K 1s the kicking sttength

The eigenvalues exp(—tg,,) of F define the quasieneigies
£,€(027) The mean spacing 27/M of the quasieneigies
plays the 10le of the mean level spacing § m the quantum
dot

To model a pan of N mode ballistic leads, we impose
open boundary conditions 1n a subspace of Hilbert space
tepiesented by the indices mff‘) The subscipt n
=1,2, N labels the modes and the supeisciipt a=1,2 la
bels the leads A 2N XM piojection matiix P descuibes the
coupling to the ballistic leads Its elements ate

L of m=ne{m'®}

P (23)

T

0 otherwise

The mean dwell ume s 7p,=M/2N (in units of 74)
The matiices P and F together determine the quasienergy
dependent scattering matiix

S(e)=Ple*=F1-PTP)] 'FPT 24)

The symmety of F ensuwies that § 1s also symmetiic, as 1t
should be m the piesence of time-teveisal symmetty By
groupmg together the N ndices belonging to the same lead
the 2NX2N matiix § can be decomposed mto four sub
blocks containing the N XN transmission and 1eflection ma
tiices,

25)

The conductance G (in units of e?/h) follows fiom the Lan
dauer formula

G=Ti ttf (26)

The open quantum kicked 1otator has a classical limut
desciibed by a map on the torus {x p|modulol} The classi-
cal phase space, including the leads, 1s shown 1 Fig | The
map 1elates v,p at tume & to \',p’ at time k+ 1

1%

27
ax’

J
p'=—=S8x"a) p=— =Sk x)
The classical mechanics becomes fully chaotic for K=7,
with Lyapunov exponent A=In(K/2) For smaller K the
phase space 1s mixed contammg both 1egions of chaotic and
of 1egulal motion We will testiict ouiselves to the fully cha-
otic 1egime 1n this papei

I NUMI RICAT RESULIS

To calculate the conductance (2 6) we need to mvert the
M XM maliix between squaie biackets n Eq (24) We do
this numerically using an tterative procedure ! The iteration
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FIG 1 Classical phase space of the open kicked rotator The
dashed lines indicate the two leads (shown fo1 the case 7, 5)
Inside each lead we plot the mitial and final cooidinates of tiajec
tortes which are tiansmitted fiom the leit to the nght lead after at
most thiee iterations (with K=735) The points cluster along nar
tow tansmission bands

can be done etficiently using the fast Foutiei-ttansform algo
1ithm to calculate the application of F to a vector The time
tequued to calculate S scales as M?*In M which for laige M
1s quicker than the M* scaling of a dnect mnveision The
memoly tequuements scale as M, because we need not stote
the full scattering matiix to obtamn the conductance

We distinguish two types of mesoscopic fluctuations in
the conductance The fiist type appeats upon vairymg the
quasieneigy e tor a given scattering mattix S(e) Smce these
fluctuations have no classical analog [the classical map (2 7)
bemng ¢ independent], we 1efer to them as quantum fluctua
tions The second type appeais upon vaiying the position of
the leads so these mvolve variation of the scattermg matiix
at fixed & We 1efer to them as sample to sample fluctua
tions They have both a quantum mechanical component and
a classical analog One could intioduce a third type of fluc
tuations mvolving both vanation of ¢ and of the lead posi
tions We have found (as expected) that these ate statistically
equtvalent to the sample to-sample fluctuations at fixed & so
we need not distinguish between fluctuations of type 2 and 3

We have calculated the vaitance var G=(G?)—(G)* of
the conductance either by varymg ¢ at fixed lead positions
(quantum fluctuations) or by varymg both & and lead posi
tions (sample to sample fluctuations) Since the quantum m
terterence pattein 15 completely ditfeient only for eneigy
variations of oider of the Thouless eneigy 1/7p  we choose a
number 7, of equally spaced values of € m the mterval
(02m) We take ten diffetent lead posttions, 1andomly lo
cated at the v axis in Frg 1 To investigate the quantum to
classical ciossover we change i ;= 1/M while keepmg the
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FIG. 2. Variance of the conductance fluctuations obtained nu-
merically by varying ¢ with fixed lead positions. Error bars indicate
the scatter of values obtained for different lead positions. Results
are shown as a function ol 1/h.4=M, for two values of the dwell
lllﬂ[e Tp=M/2N. The dashed line is the RMT prediction var G

=3.

dwell time 7,=M/2N constant. The results are plotted in
Figs. 2 and 3.

IV. INTERPRETATION

We interpret the numerical data by assuming that the vari-
ance of the conductance is the sum of two contributions: a
universal quantum-mechanical contribution Vit given by
random-matrix theory and a nonuniversal quasiclassical con-
tribution V,; determined by sample-to-sample fluctuations in
the classical transmission probabilities.

The RMT contribution equals3‘4

VRMT= %> 4.1)
in the presence of time-reversal symmetry. The classical con-
tribution is calculated from the classical map (2.7), by deter-
mining the probability P,_, of a particle injected randomly
through lead I to escape via lead 2. Since the conductance is
given semiclassically by G4=NP_,, we obtain

VclzN2 var P _.,. (4.2)
T T v T
K=75 O ®
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FIG 3 Same as Fig. 2, but now {or an ensemblc 1 which the
lcad positions and the quasienergy are both varied The dashed lines
arc the sum ol the RMT vatue (4.1) and the classical result (4.2).
Results are shown for thice values of the kicking stiength K Open
symbols are for the dwell tme 75,=10 and closcd ones for 7p
=20
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FIG. 4. Variance of the classical fluctuations of the transmission
probabulity P, _., upon changes of lead positions, calculated nu-
merically from the map (2.7). The data are shown for four values of
the dwell ume 7,5, as a function of the Lyapunov exponent X\
=1n(K72). The dotted lines are the analytical prediction (4.3), with
fit parameters ¢ = 1.6 and 7,,=0.68 (the same for all data sets).

We plot var G = Vgyr+ V, in Fig. 3 (dashed curves), for
comparison with the results of our full quantum-mechanical
calculation. The agreement is excellent.

We now would like to investigate what ratio of time
scales governs the crossover from quantum to classical flue-
tuations.

To estimate the magnitude of the sample-to-sample fluc-
tuations in the classical transmission probability, we use re-
sults from Ref. 6. There it was found that the starting points
(and end points) of transmitted trajectories are not homoge-
neously distributed in phase space. Instead, they cluster to-
gether in nearly parallel, narrow bands. These transmission
bands are clearly visible in Fig. 1. The largest band has an
area A, =Age "¢ determined by the ergodic time Terg -
This is the time required for a trajectory to explore the whole
accessible phase space. The values of 7., and A, depend on
the degree of collimation of the beam of trajectories injected
into the system.6 For our model, without collimation, one has
Tag Of oOrder unity (one stroboscopic period) and Ag
=(N/M)>. The typical transmission band has an area
Age ™™ which is exponentially smaller than A, (since
Tp=MI2N> 7o),

As the position of the lead is moved around, transmission
bands move into and out of the lead. The resulting fiuctua-
tions in the transmission probability P;_., are dominated by
the largest band. Since there is an exponentially large num-
ber ¢ of typical bands, their fluctuations average out. The
total area in phase space of the lead iS Ap,g=N/M, so we
estimate the mean-squared fluctuations in P, _- at

- 2 2,7 2\T,

var Py a=(A [ A) = c(NIM) e ae, (4.3)
with ¢ and 7, of order unity. We have tested this functional
dependence numerically for the map (2.7), and find a reason-
able agreement (sec Fig. 4). Both the exponential depen-
dence on A and the quadratic dependence on 7,=M/2N are
consistent with the data. We find 7,,=0.68 of order unity, as
expected.

Equations (4.2) and (4.3) mply

a

var G=1+c(NYM?)e *Nee, (4.4)
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FIG 5 Same data as in Fig 3 tescaled to show the approach to
a smgle limiting cutve 1n the large dwell tme Iimit The solid line 1s
calculated fiom Eq (4 4), with the same patameters ¢ =10, T,
=068 asm Fig 4

In Fig 5 we plot the same data as m Fig 3, but now as a
function of (N*/M?)e™* o> We see that the functional de-
pendence (4 4) 1s approached tor laige dwell times

The quantum fluctuations of RMT donmunate over the clas-
sical fluctuations 1f N? var P,_,<<1 Using the estimate
(4 3), this amounts to the condition

Tae>max[ O\ " In(N*/M)]= 77 45)

that the eigodic time exceeds the Ehientest time Notice that
condition (4 35) 1s always satisfied 1if N><M =1/l This
agtees with the findings of Ref 6 that the bieakdown of
RMT staits when N= \W

V. CONCLUSIONS

In summary, we have piesented both a fully quantum-
mechantcal and a semiclassical calculation of the quantum-
to-classical ciossover fiom univeisal to nonumiveisal con-
ductance fluctuations The two calculations aie in vely good
agieement, without any adjustable parametet (compaie data
pouts with curves i Fig 3) We have also given an analyti-
cal approximation to the numerical data, which allows us to
determine the parametiic dependence of the crossover

We have found that universality ot the conductance fluc-
tuations requites the ergodic tume 7, to be latger than the
Ehienfest tuime 7 This condition 1s much moie stringent
than the condition that the dwell time 75, should be laiget
than 7z, found previously for universality of the shot noise
m a quantum dot ¢ 1! The umversality of the excitation gap
1 a quantum dot connected to a superconductos 1s also gov-
emed by the 1atio 7p /7 1ather than Te,g/rg,”“g as 1s the
univeisality of the weak-localization effect '2!* These two
properties have i common that they represent ensemble av-
elages, 1ather than sample-to-sample fluctuations

We propose that what we have found hete for the conduc-
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tance 1s genetic for other tianspoit propeities That the
breakdown of RMT with mcieasing 7o occuis when 7,
> 7 for ensemble averages and when 7> 7, for the fluc-
tuations This has immediate experrmental consequences, be-
cause 1t 18 much easter to violate the condition 7> 7, than
the condition 7> 7p

To test this proposal, an obvious next step would be to
determine the 1atto of time scales that govern the bieakdown
of untversality of the fluctuations n the supeiconducting ex-
citation gap The numerical data i Refs 14 and 21 wete
mnteipieted m teims of the iatio 7, /7p, but an alternative
description m teims of the 1at10 75/ 7, Was not consideied

One final temaik about the distinction between classical
and quantum fluctuations (explamed i Sec III) 1s as fol-
lows It 1s possible to suppiess the classical fluctuations en-
tuely, by vatying only the quasieneigy at fixed lead post-
tons In that case we would expect the bieakdown of
universality o be governed by 7 /7, mstead of 7. /7g
Our numernical data (Fig 2) do not show any systematic de-
viation from RMT, piobably because we could not 1each
sufficiently laige systems i our sumulation

1 Note added

Ou final temark above has been criticized by Tacquod
and Sukhorukov ** They aigue that the numetical data of Fig
2 (and similat data of then own) do not show any systematic
deviation fiom RMT because quantum fluctuations remain
umiversal 1f 72> 7, Then argument 1elies on the assump-
tion that the etfective RMT ot Ref 6 holds not only for the
classical fluctuations (as we assume hete), but also for the
quantum fluctuations The effective RMT says that quantum
fluctuations ate due to a number Nog=~Ne ™7 /70 of tansmis-
sion channels with a RMT distiibution Universality of the
quantum fluctuations 15 then guaianteed even if Nop]N, as
long as N.g 18 still laige compated to unity

This lme of 1easonmng, if puisued {uither, contradicts the
established theoty'?'* of the 7, dependence of weak local-
1zatton RMT says that the weak-localization cotrection 6G
= — 1 15 independent of the number of channels A Vahdity
of the effective RMT at the quantum level would theietore
imply that weak localization temams univessal if 7> 7, as
long as Ne ™/7>| Ths contiadicts the 1esult 8G
=1e” '™ of Rets 12 and 13
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