Adiabatic Quantization of Andreev Quantum Billiard Levels

PG Silvestiov, ${ }^{12}$ M C Goorden, ${ }^{1}$ and C W J Beenakker ${ }^{1}$
${ }^{1}$ Instituut-Lorentz Unversiteit Leiden, PO Box 95062300 RA Leiden, The Netheilands
${ }^{2}$ Budker Instutute of Nuclear Physics 630090 Novosibirsk Russta

(Received 12 August 2002, published 17 March 2003)

Abstract

We rentify the time T between Andieev reflections as a classical adrabatic invariant in a ballistic chaotic cavity (Lyapunov exponent λ), coupled to a supeiconductor by an N mode constriction Quantization of the adiabatically invariant tor us in phase space gives a disciete set of periods T_{n}, which in turn generate a laddeı of excited states $\varepsilon_{n m}=(m+1 / 2) \pi \hbar / T_{n}$ The langest quantized period is the Ehrenfest time $T_{0}=\lambda^{-1} \ln N$ Piojection of the invariant tol us onto the coordinate plane shows that the wave functions inside the cavity ate squeezed to a tiansverse dimension W / \sqrt{N}, much below the width W of the constuction

DOI 10 1103/PhysRevLett 90116801

The notion that quantized energy levels may be associated with classical adiabatic invaitants goes back to Ehienfest and the buth of quantum mechanics [1] It was successful in providing a semiclassical quantization scheme for special integiable dynamical systems but failed to descirbe the generic nonıntegiable case Adiabatic invaisants play an interesting but minoi sole in the quantization of chaotic systems [2,3]

Since the existence of an adiabatic invaliant is the exception rather than the iule, the emergence of a new one quite often teaches us something useful about the system An example fiom condensed matter physics is the quantum Hall effect, in which the semiclassical theory is based on two adiabatic invariants the flux thiough a cyclotion orbit and the flux enclosed by the orbit center as it slowly dirfts along an equipotential [4] The stiong magnetic field suppiesses chaotic dynamics in a smooth potential landscape, rendering the motion quası-integrable

Some time ago it was realized that Andieev reflection has a simular effect on the chaotic motion in an electron billiard coupled to a superconductor [5] An election trajectory is retiaced by the hole that is produced upon absorption of a Cooper pail by the superconductor At the Fermı enetgy E_{F} the dynamics of the hole is precisely the time reverse of the election dynamics, so that the motion is stictly periodic The period fiom election to hole and back to election is twice the time T between Andieev reflections For finite excitation energy ε the election (at energy $E_{F}+\varepsilon$) and the hole (at eneıgy $E_{F}-\varepsilon$) follow slightly different tiajectories, so the orbit does not quite close and difts around in phase space This difft has been studied in a vanety of contexts [5-9] but not in connection with adiabatic invailants and the associated quantization conditions It is the puipose of this Letter to make that connection and point out a stirking physical consequence The wave functions of Andieev levels fill the cavity in a highly nonuniform "squeezed" way, which has no counterpatt in normal
state chaotic or regular billiards In particular, the squeezing is distinct fiom periodic orbit scaining [10] and entirely different fiom the 1 andom superposition of plane waves expected for a fully chaotic billiand [11]

Adiabatic quantization bieaks down near the excitation gap, and we will argue that andom-matrix theory [12] can be used to quantize the lowest-lying excitations above the gap This will lead us to a formula for the gap that crosses over from the Thouless energy to the inverse Ehienfest time as the number of modes in the point contact is incieased

To illustiate the problem we repiesent in Figs 1 and 2 the quasiperiodic motion in a paiticula Andieev billiard (It is similaı to a Sinai billiard but has a smooth potential V in the interior to favor adiabaticity) Figure 1 shows a trajectory in real space while Fig 2 is a section of phase space at the interface with the superconductor $(y=0)$ The tangential component p_{λ} of the election momentum is plotted as a function of the cooidinate λ along the interface Each point in this Poincaré map coniesponds to one collision of an election with the interface (The collisions of holes are not plotted) The election is retioreflected as a hole with the same p_{λ} At $\varepsilon=0$ the component p, is also the same, and so the hole retraces the path of the election (the hole velocity being opposite to its momentum) At nonzeio ε the retroreflection occurs with a slight change in p_{3}, because of the difference 2ε in the kinetic energy of elections and holes The resulting slow diff of the periodic trajectory traces out a contour in the surface of section The adiabatic invaitant is the function of x, p_{\imath} that is constant on the contour We have found numerically that the dift follows sochionous contours C_{T} of constant time $T\left(x, p_{\lambda}\right)$ between Andieev ieflections [13] Let us now demonstiate analytically that T is an adiabatic invairant

We consider the Poincaré map $C_{T} \rightarrow C(\varepsilon, T)$ at energy ε If $\varepsilon=0$ the Poincare map is the rdentity, so $C(0 T)=C_{T}$ For adrabatic invatrance we need to prove that $\lim _{\varepsilon \rightarrow 0} d C / d \varepsilon=0$, so that the difference between

FIG. 1. Classical trajectory in an Andreev billiard. Particles in a two-dimensional electron gas are deffected by the potential $V=\left[1-(r / L)^{2}\right] V_{0}$ for $r<L, V=0$ for $r>L$. (The dotted circles are equipotentials.) There is specular reffection at the boundaries with an insulator (thick solid lines) and Andreev reflection at the boundary with a superconductor (dashed line). The tiajectory follows the motion between two Andreev reflections of an electron near the Fermı energy $E_{F}=0.84 V_{0}$. The Andreev reflected hole retraces this trajectory in the opposite direction.
$C(\varepsilon, T)$ and C_{T} is of higher order than ε [14]. Since the contour $C(\varepsilon, T)$ can be locally represented by a function $p_{x}(x, \varepsilon)$, we need to prove that $\lim _{\varepsilon \rightarrow 0} \partial p_{i}(x, \varepsilon) / \partial \varepsilon=0$.

In order to prove this, it is convenient to decompose the map $C_{T} \rightarrow C(\varepsilon, T)$ into three separate stages, starting out as an electron (from C_{T} to C_{+}), followed by Andreev reflection ($C_{+} \rightarrow C_{-}$), and then concluded as a hole [from C_{-}to $C(\varepsilon, T)$]. Andreev reflection introduces a discontinuity in p_{y} but leaves p_{x} unchanged, so $C_{+}=$ C_{-}. The flow in phase space as electron $(+)$or hole $(-)$at energy ε is described by the action $S_{ \pm}(\mathbf{q}, \varepsilon)$, such that $\mathbf{p}^{ \pm}(\mathbf{q}, \varepsilon)=\partial S_{ \pm} / \partial \mathbf{q}$ gives the local dependence of (electron or hole) momentum $\mathbf{p}=\left(p_{\lambda}, p_{y}\right)$ on position $\mathbf{q}=$ (x, y). The derivative $\partial S_{ \pm} / \partial \varepsilon=t_{ \pm}(\mathbf{q}, \varepsilon)$ is the time elapsed since the previous Andreev reflection. Since by construction $t_{ \pm}(x, y=0, \varepsilon=0)=T$ is independent of the position x of the end of the trajectory, we find that $\lim _{\varepsilon \rightarrow 0} \partial p_{x}^{ \pm}(x, y=0, \varepsilon) / \partial \varepsilon=0$, completing the proof.

The drift $\left(\delta x, \delta p_{x}\right)$ of a point in the Poincaré map is perpendicular to the vector $\left(\partial T / \partial x, \partial T / \partial p_{x}\right)$. Using also that the map is area preserving, it follows that

$$
\begin{equation*}
\left(\delta x, \delta p_{\imath}\right)=\varepsilon f(T)\left(\partial T / \partial p_{\lambda},-\partial T / \partial x\right)+O\left(\varepsilon^{2}\right) \tag{1}
\end{equation*}
$$

with a prefactor $f(T)$ that is the same along the entire contour.

The adiabatic invariance of isochronous contours may alter natively be obtained from the adiabatic invariance of the action integral I over the quasiperiodic motion from

FIG. 2 (color online). Poncaré map for the Andreev billiand of Fig. 1. Each dot represents a starting point of an electron trajectory, at position x (in units of L) along the interface $y=0$ and with tangentral momentum $p_{\mathrm{\imath}}$ (in units of $\sqrt{m V_{0}}$). The inset shows the full surface of the section, while the main plot is an enlargement of the central region. The difting quasiperiodic motion follows contours of constant time T between Andreev reflections. The cross marks the starting point of the trajectory shown in the previous figure, having $T=18$ (in units of $\sqrt{m L^{2} / V_{0}}$).
electron to hole and back to electron:

$$
\begin{equation*}
I=\oint p d q=\varepsilon \oint \frac{d q}{q}=2 \varepsilon T \tag{2}
\end{equation*}
$$

Since ε is a constant of the motion, adiabatic invariance of I implies adiabatic invariance of the time T between Andreev reflections. This is the way in which adiabatic invariance is usually proven in textbooks. Our proof explicitly takes into account the fact that phase space in the Andreev billiard consists of two sheets, joined in the constriction at the interface with the superconductor, with a discontinuity in the action on going from one sheet to the other.

The contours of large T enclose a very small area. This will play a crucial role when we quantize the billiard, so let us estimate the area. It is convenient for this estimate to measure p_{\imath} and x in units of the Fermi momentum p_{F} and width W of the constriction to the superconductor. The highly elongated shape evident in Fig. 2 is a consequence of the exponential divergence in time of nearby trajectories, characteristic of chaotic dynamics. The rate of divergence is the Lyapunov exponent λ. (We consider a fully chaotic phase space.) Since the Hamiltonian flow is area preserving, a stretching $\ell_{+}(t)=$ $\ell_{+}(0) e^{\lambda t}$ of the dimension in one direction needs to be compensated by a squeezing $\ell_{-}(t)=\ell_{-}(0) e^{-\lambda t}$ of the dimension in the other direction. The area $A \simeq \ell_{+} \ell_{-}$is
then time independent Intially, $\ell_{ \pm}(0)<1$ The constriction at the superconductor acts as a bottleneck, enforcing $\ell_{ \pm}(T)<1$ These two inequalities imply $\ell_{+}(t)<e^{\lambda(t-T)}$, $\ell_{-}<e^{-\lambda t}$ The enclosed area, therefore, has the upper bound

$$
\begin{equation*}
A_{\max } \simeq p_{F} W e^{-\lambda T} \simeq \hbar N e^{-\lambda T} \tag{3}
\end{equation*}
$$

whete $N \simeq p_{F} W / \hbar \gg 1$ is the number of channels in the point contact

We now continue with the quantization The two invariants ε and T define a two-dimensional torus in the four-dimensional phase space Quantization of this adiabatically invariant torus proceeds following Einsteın Bitlouin-Kelleı [3], by quantızıng the area

$$
\begin{equation*}
\oint p d q=2 \pi \hbar(m+\nu / 4), \quad m=0,1,2, \tag{4}
\end{equation*}
$$

enclosed by each of the two topologically independent contours on the torus Equation (4) ensures that the wave functions are single valued (See Ref [15] for a derivation in a two-sheeted phase space) The integer ν counts the number of caustics (Maslov index) and in our case should also include the number of Andieev reflections

The first contour follows the quasiperiodic orbit of Eq (2), leading to

$$
\begin{equation*}
\varepsilon T=\left(m+\frac{1}{2}\right) \pi \hbar, \quad m=0,1,2 \tag{5}
\end{equation*}
$$

The quantization condition (5) is sufficient to determine the smoothed density of states $\rho(\varepsilon)$, using the classical probability distribution $P(T) \propto \exp (-T N \delta / h)$ [16] for the time between Andreev reflections (We denote by δ the level spacing in the isolated billiaid) The density of states

$$
\begin{equation*}
\rho(\varepsilon)=N \int_{0}^{\infty} d T P(T) \sum_{m=0}^{\infty} \delta\left[\varepsilon-\left(m+\frac{1}{2}\right) \pi \hbar / T\right] \tag{6}
\end{equation*}
$$

has no gap but vanıshes smoothly $\propto \exp (-N \delta / 4 \varepsilon)$ at energres below the Thouless energy $N \delta$ This "Boh1Sommer feld appioximation" [12] has been quite successful [17-19], but it gives no information on the location of individual eneigy level-not can it be used to detetmıne the wave functions

To find these we need a second quantization condition, which is provided by the area $\oint_{T} p_{\lambda} d x$ enclosed by the contours of constant $T\left(x, p_{x}\right)$,

$$
\begin{equation*}
\oint_{T} p_{\imath} d \lambda=2 \pi \hbar(n+\nu / 4), \quad n=0,1,2 \tag{7}
\end{equation*}
$$

Equation (7) amounts to a quantization of the period T, which togethet with Eq (5) leads to a quantization of ε For each T_{n} theie is a ladder of Andieev levels $\varepsilon_{n m}=\left(m+\frac{1}{2}\right) \pi \hbar / T_{n}$

While the classical T can become arbitiantly laige, the quantized T_{n} has a cutoff The cutoff follows fiom the maximal area (3) enclosed by an isochionous contour

Since Eq (7) requires $A_{\max }>2 \pi \hbar$, we find that the longest quantized period is $T_{0}=\lambda^{-1}[\ln N+\mathcal{O}(1)]$ The lowest Andieev level associated with an adiabatically invariant tor us is therefore

$$
\begin{equation*}
\varepsilon_{00}=\frac{\pi \hbar}{2 T_{0}}=\frac{\pi \hbar \lambda}{2 \ln N} \tag{8}
\end{equation*}
$$

The time scale $T_{0} \propto|\ln \hbar|$ repiesents the Ehienfest time of the Andieev billiand, which sets the scale for the excitation gap in the semiclassical limit [20-22]

We now tuin fiom the energy levels to the wave functions The wave function has electron and hole components $\psi_{ \pm}(x, y)$, conlesponding to the two sheets of phase space By projecting the invariant torus in a single sheet onto the $x-y$ plane we obtain the suppoit of the election or hole wave function This is shown in Fig 3, for the same billiaid presented in the pievious figuies The curves are stieamlines that follow the motion of individual elections, all shaing the same time T between Andreev reflections (A single one of these trajectories was shown in Fig 1)
Together the streamlines form a flux tube that represents the suppoit of ψ_{+}The width δW of the flux tube is of order W at the constiction but becomes much smalleı in the interion of the billiard Since $\delta W / W<\ell_{+}+\ell_{-}<$ $e^{\lambda(t-T)}+e^{-\lambda t}$ (with $0<t<T$), we conclude that the flux tube is squeezed down to a width

$$
\begin{equation*}
\delta W_{\min } \simeq W e^{-\lambda T / 2} \tag{9}
\end{equation*}
$$

The flux tube for the level ε_{00} has a minımal width $\delta W_{\min } \simeq W / \sqrt{N}$ Paiticle conservation implies that $\left|\psi_{+}\right|^{2} \propto 1 / \delta W$, so that the squeezing of the flux tube is

FIG 3 Piojection onto the $x y$ plane of the invaiant toius with $T=18$, repiesenting the suppoit of the election compo nent of the wave function The flux tube has a laige width near the superconductor which is squeezed to an indistinguishably small value after a few collisions with the boundaries
associated with an inctease of the election density by a factor of \sqrt{N} as one moves away fiom the constriction

Let us examıne the range of validity of adrabatic quantization The dift $\delta x, \delta p_{\lambda}$ upon one iteration of the Poincare map should be small compared to $W p_{\Gamma}$ We estimate

$$
\begin{equation*}
\frac{\delta x}{W} \simeq \frac{\delta p_{r}}{p_{F}} \simeq \frac{\varepsilon_{n m}}{\hbar \lambda N} e^{\lambda T_{,}} \simeq\left(m+\frac{1}{2}\right) \frac{e^{-\lambda\left(T_{0}-T\right)}}{\lambda T_{n}} \tag{10}
\end{equation*}
$$

For low-lying levels ($m \sim 1$) the dimensionless dift is $\ll 1$ for $T_{n}<T_{0}$ Even for $T_{n}=T_{0}$ one has $\delta x / W \simeq$ $1 / \ln N \ll 1$

Semiclassical methods allow one to quantize only the tiajectories with periods $T \leq T_{0}$ The part of phase space with longei periods can be quantized by iandom-matirx theory, accoiding to which the excitation gap $E_{\text {gap }}$ is the inverse of the mean time between Andreev reflections in that part of phase space [12,17]

$$
\begin{equation*}
E_{\text {gap }}=\gamma^{5 / 2} \hbar \frac{\int_{T_{0}}^{\infty} P(T) d T}{\int_{T_{0}}^{\infty} T P(T) d T}=\frac{\gamma^{5 / 2} \hbar}{T_{0}+2 \pi \hbar / N \delta} \tag{11}
\end{equation*}
$$

Here $\gamma=\frac{1}{2}(\sqrt{5}-1)$ is the golden ratio This formula describes the crossovel from $E_{\text {gap }}=\gamma^{5 / 2} \hbar / T_{0}=$ $\gamma^{5 / 2} \hbar \lambda / \ln N$ to $E_{\text {gap }}=\gamma^{5 / 2} N \delta / 2 \pi$ at $N \ln N \simeq \hbar \lambda / \delta$ It requires $\hbar \lambda / N \delta \gg 1$ (mean dwell time laige compated to the Lyapunov tume) The semiclassical (large- N) limit of Eq (11), $\lim _{N \rightarrow \infty} E_{\text {gap }}=030 \hbar / T_{0}$ is a factor of 5 below the lowest adıabatic level, $\varepsilon_{00}=$ $16 \hbar / T_{0}$, so that indeed the energy iange near the gap is not accessible by adiabatic quantization [23]

Up to now we considered two-dimensional Andieev billiaids Adrabatic quantization may equally well be applied to three-dimensional systems, with the area enclosed by an isochionous contour as the second adiabatic invaisant For a fully chaotic phase space with two Lyapunov exponents λ_{1}, λ_{2}, the longest quantized period is $T_{0}=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)^{-1} \ln N$ We expect interesting quantum size effects on the classical localization of Andieev levels discovered in Ref [7], which should be measurable in a thin metal film on a superconducting substiate

One important challenge for future research is to test the adiabatic quantization of Andreev levels numerically, by solving the Bogoliubov-de Gennes equation on a computer The characterstic signature of the adrabatic invailant that we have discovered, a natiow region of enhanced intensity in a chaotic iegion that is squeezed as one moves away from the superconductor, should be readrly observable and distingurshable fiom other features that are unielated to the presence of the superconductor, such as scars of unstable periodic orbits [10] Experimentally these regions might be obser vable using a scanning tunneling piobe, which piovides an energy and spatially iesolved measurement of the election density

This work was supported by the Dutch Scrence Foundation NWO/FOM We thank I Adagidelı and

J Tworzydło for helpful discussions
[1] P Ehrenfest, Ann Phys (Lerp7ig) 51, 327 (1916)
[2] C C Martens, R L Waterland, and W P Reinhardt, J Chem Phys 90, 2328 (1989)
[3] M C Gutzwilles, Chaos in Classical and Quantum Mechanics (Spııngeı, Berlin, 1990)
[4] R E Prange, in The Quantum Hall Effect, edited by R E Piange and S M Girvin (Springer, New Yoik, 1990)
[5] I Kosztin, D L Maslov, and P M Goldbaıt, Phys Rev Lett 75, 1735 (1995)
[6] M Stone, Phys Rev B 54, 13222 (1996)
[7] A V Shytov, P A Lee, and L S Levitov, Phys Usp 41, 207 (1998)
[8] I Adagidelt and P M Goldbaıt, Phys Rev B 65, 201306 (2002)
[9] J Wiersig, Phys Rev E 65, 036221 (2002)
[10] E J Heller, Phys Rev Lett. 53, 1515 (1984)
[11] PW O'Conno1, J Gehlen, and E Helles, Phys Rev Lett 58, 1296 (1987)
[12] J A Melsen, PW Biouwer, K M Frahm, and C W J Beenakker, Europhys Letl 35, 7 (1996)
[13] Isochronous contours are defined as $T\left(\lambda, p_{\lambda}\right)=$ const at $\varepsilon=0$ We assume that the isochionous contous are closed This is tue if the border $p_{3}=0$ of the classically allowed region in the λ, p, section is itself an sochionous contoul, which is the case if $\lim _{1 \rightarrow 0} \partial V / \partial y \leq 0$ In this case the patucle leaving the supetconductor with infinitesimal p, cannot penetiate into the billiard
[14] Adrabatic invaisance is defined in the limit $\varepsilon \rightarrow 0$ and is therefore distinct from invariance in the sense of Kolmogorov-Aınold Moser (KAM), which would 1 e quine a citical ε such that a contour is exactly invaitant for $\varepsilon<\varepsilon^{4}$ Numerical evidence [5] suggests that the KAM theorem does not apply to a chaotic Andreev billard
[15] K P Duncan and B L Gyorffy, Ann Phys (NY) 298, 273 (2002)
[16] W Bauer and G F Bertsch, Phys Rev Lett, 65, 2213 (1990)
[17] H Schomerus and C W J Beenakker, Phys Rev Lett 82, 2951 (1999)
[18] W Ihıa, M Leadbeater, J L Vega, and K Richter, Europhys J B 21, 425 (2001)
[19] J Cseitı, A Kormányos, Z Kaufmann, J Koltaı, and C J Lambert, Phys Rev Lett 89, 057001 (2002)
[20] A Lodder and Yu V Nazarov, Phys Rev B 58, 5783 (1998)
[21] D Taras-Semchuk and A Altland, Phys Rev B 64, 014512 (2001)
[22] I Adagıdelı and C W J Beenakker, Phys Rev Lett 89, 237002 (2002)
[23] The density of states near the gap is obtained in the same way as Eq (11), with the tesult $\rho(\varepsilon)=c\left(\varepsilon-E_{\mathrm{g} \mathrm{p}}\right)^{1 / 2} \times$ $N_{\mathrm{uf}}{ }^{1 / 2} \delta_{\mathrm{eff}}^{3 / 2}$, where $N_{\mathrm{eft}}=N^{1-N \delta / h \lambda}, \quad \delta_{\text {eff }}^{-1}=\left(\delta^{-1}+\right.$ $N \ln N / h \lambda) N^{-N \delta / h \lambda}, \quad$ and $\quad c=4(\pi / \sqrt{5})^{1 / 2} \gamma^{5 / 4}(9+$ $4 \sqrt{5})^{2 / 3} \approx 18$

