92 research outputs found

    Discovery of a red supergiant counterpart to RX J004722.4-252051, a ULX in NGC 253

    Get PDF
    We present two epochs of near-infrared spectroscopy of the candidate red supergiant counterpart to RX J004722.4–252051, a ULX in NGC 253. We measure radial velocities of the object and its approximate spectral type by cross-correlating our spectra with those of known red supergiants. Our VLT/X-shooter spectrum is best matched by that of early M-type supergiants, confirming the red supergiant nature of the candidate counterpart. The radial velocity of the spectrum, taken on 2014 August 23, is 417 ± 4 km s−1. This is consistent with the radial velocity measured in our spectrum taken with Magellan/MMIRS on 2013 June 28, of 410 ± 70 km s−1, although the large error on the latter implies that a radial velocity shift expected for a black hole of tens of M⊙ can easily be hidden. Using nebular emission lines we find that the radial velocity due to the rotation of NGC 253 is 351 ± 4 km s−1 at the position of the ULX. Thus the radial velocity of the counterpart confirms that the source is located in NGC 253, but also shows an offset with respect to the local bulk motion of the galaxy of 66 ± 6 km s−1. We argue that the most likely origin for this displacement lies either in a SN kick, requiring a system containing a ≳ 50 M⊙ black hole, and/or in orbital radial velocity variations in the ULX binary system, requiring a ≳ 100 M⊙ black hole. We therefore conclude that RX J004722.4–252051 is a strong candidate for a ULX containing a massive stellar black hole

    Probing for the host galaxies of the fast X-ray transients XRT 000519 and XRT 110103

    Get PDF
    Over the past few years, ∌30 extragalactic fast X-ray transients (FXRTs) have been discovered, mainly in Chandra and XMM-Newton data. Their nature remains unclear, with proposed origins, including a double neutron star merger, a tidal disruption event involving an intermediate-mass black hole and a white dwarf, or a supernova shock breakout. A decisive differentiation between these three promising mechanisms for their origin requires an understanding of the FXRT energetics, environments, and/or host properties. We present optical observations obtained with the Very Large Telescope for the FXRTs XRT 000519 and XRT 110103 and Gran Telescopio Canarias observations for XRT 000519 designed to search for host galaxies of these FXRTs. In the gs, rs, and R-band images, we detect an extended source on the north-west side of the ∌1â€Čâ€Č (68 per cent confidence) error circle of the X-ray position of XRT 000519 with a Kron magnitude of gs = 26.29 ± 0.09 (AB magnitude). We discuss the XRT 000519 association with the probable host candidate for various possible distances, and we conclude that if XRT 000519 is associated with the host candidate a supernova shock breakout scenario is likely excluded. No host galaxy is found near XRT 110103 down to a limiting magnitude of R > 25.8

    Unidentified gamma-ray sources off the Galactic plane as low-mass microquasars?

    Get PDF
    A subset of the unidentified EGRET gamma-ray sources with no active galactic nucleus or other conspicuous counterpart appears to be concentrated at medium latitudes. Their long-term variability and their spatial distribution indicate that they are distinct from the more persistent sources associated with the nearby Gould Belt. They exhibit a large scale height of 1.3 +/- 0.6 kpc above the Galactic plane. Potential counterparts for these sources include microquasars accreting from a low-mass star and spewing a continuous jet. Detailed calculations have been performed of the jet inverse Compton emission in the radiation fields from the star, the accretion disc, and a hot corona. Different jet Lorentz factors, powers, and aspect angles have been explored. The up-scattered emission from the corona predominates below 100 MeV whereas the disc and stellar contributions are preponderant at higher energies for moderate (~15 deg) and small (~1 deg) aspect angles, respectively. Yet, unlike in the high-mass, brighter versions of these systems, the external Compton emission largely fails to produce the luminosities required for 5 to 10 kpc distant EGRET sources. Synchrotron-self-Compton emission appears as a promising alternative.Comment: 11 pages, 5 figures. Contributed paper to the "Multiwavelength Approach to Unidentified Gamma-Ray Sources", Eds. K.S. Cheng & G.E. Romero, to appear in Astrophysics and Space Science journa
    • 

    corecore