714 research outputs found

    Is the energy status influencing dispersion in American glass eel?

    Get PDF
    International audienceThe American eel has a facultative catadromous life cycle. Spawning occurs in Sargasso Sea and growth occurs into freshwater or saltwater habitats over a wide geographical range. The selection of suitable habitat for growth begins at the glass eel stage. Based on the hypothesis of conditional dispersion strategy, energetic status would determine whether glass eels would express freshwater or saltwater preference. Glass eels were captured from two rivers from Nova Scotia and two rivers from QuĂ©bec in 2011 and 2012. Following salinity preference experiments, glass eels were classified as “inactive” or as “active with preference for fresh water” and “active with preference for salt water”. They were anaesthetized in MS 222, weighed, measured and frozen in carbonic ice. Results indicate that glass eels expressing preference for freshwater had the highest condition factor. Total content of glycogen and lipids were measured in order to test whether or not the three groups of glass eels could be differentiated based on their energy status whatever the river and the year of fishing and results will be presented

    Globally convergent evolution strategies for constrained optimization

    Get PDF
    International audienceIn this paper we propose, analyze, and test algorithms for constrained optimization when no use of derivatives of the objective function is made. The proposed methodology is built upon the globally convergent evolution strategies previously introduced by the authors for unconstrained optimization. Two approaches are encompassed to handle the constraints. In a first approach, feasibility is first enforced by a barrier function and the objective function is then evaluated directly at the feasible generated points. A second approach projects first all the generated points onto the feasible domain before evaluating the objective function.The resulting algorithms enjoy favorable global convergence properties (convergence to stationarity from arbitrary starting points), regardless of the linearity of the constraints.The algorithmic implementation (i) includes a step where previously evaluated points are used to accelerate the search (by minimizing quadratic models) and (ii) addresses the particular cases of bounds on the variables and linear constraints. Our solver is compared to others, and the numerical results confirm its competitiveness in terms of efficiency and robustness

    Generation of photoionized plasmas in the laboratory of relevance to accretion-powered x-ray sources using keV line radiation

    Full text link
    We describe laboratory experiments to generate x-ray photoionized plasmas of relevance to accretion-powered x-ray sources such as neutron star binaries and quasars, with significant improvements over previous work. We refer to a key quantity, the photoionization parameter, defined as xi = 4{\pi}F/n_e where F is the x-ray flux and n_e the electron density. This is usually meaningful in a steady state context, but is commonly used, in the literature, as a figure of merit for laboratory experiments that are, of necessity, time dependent. We demonstrate that we can achieve values of xi >100 erg-cm s-1 using laser-plasma x-ray sources, in the regime of interest for several astrophysical scenarios. In particular, we show that our use of a keV line source, rather than the quasi-blackbody radiation fields normally employed in such experiments, has allowed generation of a ratio of inner-shell to outer-shell photoionization expected from a blackbody source with ~keV spectral temperature. This is a key factor in allowing experiments to be compared to the predictions of codes employed to model astrophysical sources. We compare calculations from our in-house plasma modelling code with those from Cloudy and find moderately good agreement for the time evolution of both electron temperature and average ionisation. However, a comparison of code predictions of a K-beta argon X-ray spectrum with experimental data reveals that our Cloudy simulation overestimates the intensities of more highly ionised argon species. This is not totally surprising as the Cloudy model was generated for a single set of plasma conditions, while the experimental data are spatially integrated.Comment: 20 pages, 9 figure

    Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back

    Get PDF
    Despite its well-established negative impacts on society and biodiversity, eutrophication continues to be one of the most pervasive anthropogenic influences along the freshwater to marine continuum. The interaction between eutrophication and climate change, particularly climate warming, was explicitly focused upon a decade ago by Brian Moss and others in “Allied attack: climate change and eutrophication,” which called for an integrated response to both problems, given their apparent synergy. In this review, we summarise advances in the theoretical framework and empirical research on this issue and analyse the current understanding of the major drivers and mechanisms by which climate change can enhance eutrophication, and vice versa, with a particular focus on shallow lakes. Climate change can affect nutrient loading through changes at the catchment and landscape levels by affecting hydrological patterns and fire frequency and through temperature effects on nutrient cycling. Biotic communities and their interactions can also be directly and indirectly affected by climate change, leading to an overall weakening of resilience to eutrophication impacts. Increasing empirical evidence now indicates several mechanisms by which eutrophying aquatic systems can increasingly act as important sources of greenhouse gases to the atmosphere, particularly methane. We also highlight potential feedback among eutrophication, cyanobacterial blooms, and climate change. Facing both challenges simultaneously is more pressing than ever. Meaningful and strong measures at the landscape and waterbody levels are therefore required if we are to ensure ecosystem resilience and safe water supply, conserve biodiversity, and decrease the carbon footprint of freshwaters

    Branch and bound based coordinate search filter algorithm for nonsmooth nonconvex mixed-integer nonlinear programming problems

    Get PDF
    Publicado em "Computational science and its applications – ICCSA 2014...", ISBN 978-3-319-09128-0. Series "Lecture notes in computer science", ISSN 0302-9743, vol. 8580.A mixed-integer nonlinear programming problem (MINLP) is a problem with continuous and integer variables and at least, one nonlinear function. This kind of problem appears in a wide range of real applications and is very difficult to solve. The difficulties are due to the nonlinearities of the functions in the problem and the integrality restrictions on some variables. When they are nonconvex then they are the most difficult to solve above all. We present a methodology to solve nonsmooth nonconvex MINLP problems based on a branch and bound paradigm and a stochastic strategy. To solve the relaxed subproblems at each node of the branch and bound tree search, an algorithm based on a multistart strategy with a coordinate search filter methodology is implemented. The produced numerical results show the robustness of the proposed methodology.This work has been supported by FCT (Fundação para a CiĂȘncia e aTecnologia) in the scope of the projects: PEst-OE/MAT/UI0013/2014 and PEst-OE/EEI/UI0319/2014

    HPV Prevalence and Prognostic Value in a Prospective Cohort of 255 Patients with Locally Advanced HNSCC: A Single-Centre Experience

    Get PDF
    Background. HPV is a positive prognostic factor in HNSCC. We studied the prevalence and prognostic impact of HPV on survival parameters and treatment toxicity in patients with locally advanced HNSCC treated with concomitant chemoradiation therapy. Methods. Data on efficacy and toxicity were available for 560 patients. HPV was detected by PCR. Analysis was performed using Kaplan-Meier survival curves, Fisher’s test for categorical data, and log-rank statistics for failure times. Results. Median follow-up was 4.7 years. DNA extraction was successful in 255 cases. HPV prevalence was 68.6%, and 53.3% for HPV 16. For HPV+ and HPV−, median LRC was 8.9 and 2.2 years (P=0.0002), median DFS was 8.9 and 2.1 years (P=0.0014), and median OS was 8.9 and 3.1 years (P=0.0002). Survival was different based on HPV genotype, stage, treatment period, and chemotherapy regimen. COX adjusted analysis for T, N, age, and treatment remained significant (P=0.004). Conclusions. Oropharyngeal cancer is increasingly linked to HPV. This study confirms that HPV status is associated with improved prognosis among H&N cancer patients receiving CRT and should be a stratification factor for clinical trials including H&N cases. Toxicity of CRT is not modified for the HPV population

    Small artificial waterbodies are widespread and persistent emitters of methane and carbon dioxide

    Get PDF
    Inland waters play an active role in the global carbon cycle and emit large volumes of the greenhouse gases (GHGs), methane (CH4) and carbon dioxide (CO2). A considerable body of research has improved emissions estimates from lakes, reservoirs and rivers but recent attention has been drawn to the importance of small, artificial waterbodies as poorly quantified but potentially important emission hotspots. Of particular interest are emissions from drainage ditches and constructed ponds. These waterbody types are prevalent in many landscapes and their cumulative surface areas can be substantial. Furthermore, GHG emissions from constructed waterbodies are anthropogenic in origin and form part of national emissions reporting, whereas emissions from natural waterbodies do not (according to Intergovernmental Panel on Climate Change guidelines). Here, we present GHG data from two complementary studies covering a range of land uses. In the first, we measured emissions from nine ponds and seven ditches over a full year. Annual emissions varied considerably: 0.1–44.3 g CH4 m−2 year−1 and −36–4421 g CO2 m−2 year−1. In the second, we measured GHG concentrations in 96 ponds and 64 ditches across seven countries, covering subtropical, temperate and sub-arctic biomes. When CH4 emissions were converted to CO2 equivalents, 93% of waterbodies were GHG sources. In both studies, GHGs were positively related to nutrient status (C, N, P), and pond GHG concentrations were highest in smallest waterbodies. Ditch and pond emissions were larger per unit area when compared to equivalent natural systems (streams, natural ponds). We show that GHG emissions from natural systems should not be used as proxies for those from artificial waterbodies, and that artificial waterbodies have the potential to make a substantial but largely unquantified contribution to emissions from the Agriculture, Forestry and Other Land Use sector, and the global carbon cycle

    EON-ROSE and the Canadian Cordillera Array – Building Bridges to Span Earth System Science in Canada

    Get PDF
    EON-ROSE (Earth-System Observing Network - RĂ©seau d’Observation du SystĂšme terrestrE) is a new initiative for a pan-Canadian research collaboration to holistically examine Earth systems from the ionosphere into the core. The Canadian Cordillera Array (CC Array) is the pilot phase, and will extend across the Cordillera from the Beaufort Sea to the U.S. border. The vision for EON-ROSE is to install a network of telemetered observatories to monitor solid Earth, environmental and atmospheric processes. EON-ROSE is an inclusive, combined effort of Canadian universities, federal, provincial and territorial government agencies, industry, and international collaborators. Brainstorming sessions and several workshops have been held since May 2016. The first station will be installed at Kluane Lake Research Station in southwestern Yukon during the summer of 2018. The purpose of this report is to provide a framework for continued discussion and development.RÉSUMÉEON-ROSE (Earth-System Observing Network - RĂ©seau d’Observation du SystĂšme terrestrE) est une nouvelle initiative de collaboration de recherche pancanadienne visant Ă  Ă©tudier de maniĂšre holistique les systĂšmes terrestres, depuis l’ionosphĂšre jusqu’au noyau. Le RĂ©seau canadien de la cordillĂšre (CC Array) en est la phase pilote, laquelle couvrira toute la CordillĂšre, de la mer de Beaufort jusqu’à la frontiĂšre Ă©tasunienne. L’objectif d’EON-ROSE est d’installer un rĂ©seau d’observatoires tĂ©lĂ©mĂ©triques pour suivre en continu les processusterrestres, environnementaux et atmosphĂ©riques. EON-ROSE est un effort combinĂ© et inclusif des universitĂ©s canadiennes, des organismes gouvernementaux fĂ©dĂ©raux, provinciaux et territoriaux, de l’industrie et de collaborateurs internationaux. Des sĂ©ances de remue-mĂ©ninges et plusieurs ateliers ont Ă©tĂ© tenus depuis mai 2016. La premiĂšre station sera installĂ©e Ă  la station de recherche du lac Kluane, dans le sud-ouest du Yukon, au cours de l’étĂ© 2018. Le but du prĂ©sent rapport est de fournir un cadre de discussion et de dĂ©veloppement continu

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosåtka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production
    • 

    corecore