5,878 research outputs found

    New results on q-positivity

    Get PDF
    In this paper we discuss symmetrically self-dual spaces, which are simply real vector spaces with a symmetric bilinear form. Certain subsets of the space will be called q-positive, where q is the quadratic form induced by the original bilinear form. The notion of q-positivity generalizes the classical notion of the monotonicity of a subset of a product of a Banach space and its dual. Maximal q-positivity then generalizes maximal monotonicity. We discuss concepts generalizing the representations of monotone sets by convex functions, as well as the number of maximally q-positive extensions of a q-positive set. We also discuss symmetrically self-dual Banach spaces, in which we add a Banach space structure, giving new characterizations of maximal q-positivity. The paper finishes with two new examples.Comment: 18 page

    Distribution of "level velocities" in quasi 1D disordered or chaotic systems with localization

    Full text link
    The explicit analytical expression for the distribution function of parametric derivatives of energy levels ("level velocities") with respect to a random change of scattering potential is derived for the chaotic quantum systems belonging to the quasi 1D universality class (quantum kicked rotator, "domino" billiard, disordered wire, etc.).Comment: 11 pages, REVTEX 3.

    The electron lifetime in Luttinger liquids

    Full text link
    We investigate the decoherence of the electron wavepacket in purely ballistic one-dimensional systems described through the Luttinger liquid (LL). At a finite temperature TT and long times tt, we show that the electron Green's function for a fixed wavevector close to one Fermi point decays as exp(t/τF)\exp(-t/\tau_F), as opposed to the power-law behavior occurring at short times, and the emerging electron lifetime obeys τF1T\tau_F^{-1}\propto T for spinful as well as spinless electrons. For strong interactions, (TτF)1(T\tau_F)\ll 1, reflecting that the electron is not a good Landau quasiparticle in LLs. We justify that fractionalization is the main source of electron decoherence for spinful as well as spinless electrons clarifying the peculiar electron mass renormalization close to the Fermi points. For spinless electrons and weak interactions, our intuition can be enriched through a diagrammatic approach or Fermi Golden rule and through a Johnson-Nyquist noise picture. We stress that the electron lifetime (and the fractional quasiparticles) can be revealed from Aharonov-Bohm experiments or momentum resolved tunneling. We aim to compare the results with those of spin-incoherent and chiral LLs.Comment: 20 pages, 1 column, 6 figures, 1 Table; expands cond-mat/0110307 and cond-mat/0503652; final version to appear in PR

    Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms

    Get PDF
    The 5g4f5g-4f transitions in pionic nitrogen and muonic oxygen were measured simultaneously by using a gaseous nitrogen-oxygen mixture at 1.4\,bar. Due to the precise knowledge of the muon mass the muonic line provides the energy calibration for the pionic transition. A value of (139.57077\,±\pm\,0.00018)\,MeV/c2^{2} (±\pm\,1.3ppm) is derived for the mass of the negatively charged pion, which is 4.2ppm larger than the present world average

    Topological universality of level dynamics in quasi-one-dimensional disordered conductors

    Full text link
    Nonperturbative, in inverse Thouless conductance 1/g, corrections to distributions of level velocities and level curvatures in quasi-one-dimensional disordered conductors with a topology of a ring subject to a constant vector potential are studied within the framework of the instanton approximation of nonlinear sigma-model. It is demonstrated that a global character of the perturbation reveals the universal features of the level dynamics. The universality shows up in the form of weak topological oscillations of the magnitude ~ exp(-g) covering the main bodies of the densities of level velocities and level curvatures. The period of discovered universal oscillations does not depend on microscopic parameters of conductor, and is only determined by the global symmetries of the Hamiltonian before and after the perturbation was applied. We predict the period of topological oscillations to be 4/(pi)^2 for the distribution function of level curvatures in orthogonal symmetry class, and 3^(1/2)/(pi) for the distribution of level velocities in unitary and symplectic symmetry classes.Comment: 15 pages (revtex), 3 figure

    Universal Predictions for Statistical Nuclear Correlations

    Full text link
    We explore the behavior of collective nuclear excitations under a multi-parameter deformation of the Hamiltonian. The Hamiltonian matrix elements have the form P(Hij)1/Hijexp(Hij/V)P(|H_{ij}|)\propto 1/\sqrt{|H_{ij}|}\exp(-|H_{ij}|/V), with a parametric correlation of the type logH(x)H(y)xy\log \langle H(x)H(y)\rangle\propto -|x-y|. The studies are done in both the regular and chaotic regimes of the Hamiltonian. Model independent predictions for a wide variety of correlation functions and distributions which depend on wavefunctions and energies are found from parametric random matrix theory and are compared to the nuclear excitations. We find that our universal predictions are observed in the nuclear states. Being a multi-parameter theory, we consider general paths in parameter space and find that universality can be effected by the topology of the parameter space. Specifically, Berry's phase can modify short distance correlations, breaking certain universal predictions.Comment: Latex file + 12 postscript figure

    Quantum dot admittance probed at microwave frequencies with an on-chip resonator

    Full text link
    We present microwave frequency measurements of the dynamic admittance of a quantum dot tunnel coupled to a two-dimensional electron gas. The measurements are made via a high-quality 6.75 GHz on-chip resonator capacitively coupled to the dot. The resonator frequency is found to shift both down and up close to conductance resonance of the dot corresponding to a change of sign of the reactance of the system from capacitive to inductive. The observations are consistent with a scattering matrix model. The sign of the reactance depends on the detuning of the dot from conductance resonance and on the magnitude of the tunnel rate to the lead with respect to the resonator frequency. Inductive response is observed on a conductance resonance, when tunnel coupling and temperature are sufficiently small compared to the resonator frequency.Comment: 8 pages, 4 figure

    Predictably Philandering Females Prompt Poor Paternal Provisioning

    Get PDF
    One predicted cost of female infidelity in socially monogamous species is that cuckolded males should provide less parental care. This relationship is robust across species, but evidence is ambiguous within species. We do not know whether individual males reduce their care when paired with cheating females compared with when paired with faithful females (within-male adjustment) or, alternatively, if the males that pair with cheating females are the same males that provide less parental care in general (between-male effect). Our exceptionally extensive long-term data set of repeated observations of a wild passerine allows us to disentangle paternal care adjustment within males—within pairs and between males—while accounting for environmental variables. We found a within-male adjustment of paternal provisioning, but not incubation effort, relative to the cuckoldry in their nest. This effect was mainly driven by females differing consistently in their fidelity. There was no evidence that this within-male adjustment also took place across broods with the same female, and we found no between-male effect. Interestingly, males that gained more extrapair paternity provided less care. Data from a cross-foster experiment suggested that males did not use kin recognition to assess paternity. Our results provide insight into the role of individual variation in parental care and mating systems

    Universal Parametric Correlations of Conductance Peaks in Quantum Dots

    Full text link
    We compute the parametric correlation function of the conductance peaks in chaotic and weakly disordered quantum dots in the Coulomb blockade regime and demonstrate its universality upon an appropriate scaling of the parameter. For a symmetric dot we show that this correlation function is affected by breaking time-reversal symmetry but is independent of the details of the channels in the external leads. We derive a new scaling which depends on the eigenfunctions alone and can be extracted directly from the conductance peak heights. Our results are in excellent agreement with model simulations of a disordered quantum dot.Comment: 12 pages, RevTex, 2 Postscript figure

    Introduction to the Special Issue on the 2011 Tohoku Earthquake and Tsunami

    Get PDF
    The 11 March 2011 Tohoku earthquake (05:46:24 UTC) involved a massive rupture of the plate‐boundary fault along which the Pacific plate thrusts under northeastern Honshu, Japan. It was the fourth‐largest recorded earthquake, with seismic‐moment estimates of 3–5×10^(22)  N•m (M_w 9.0). The event produced widespread strong ground shaking in northern Honshu; in some locations ground accelerations exceeded 2g. Rupture extended ∼200  km along dip, spanning the entire width of the seismogenic zone from the Japan trench to below the Honshu coastline, and the aftershock‐zone length extended ∼500  km along strike of the subduction zone. The average fault slip over the entire rupture area was ∼10  m, but some estimates indicate ∼25  m of slip located around the hypocentral region and extraordinary slip of up to 60–80 m in the shallow megathrust extending to the trench. The faulting‐generated seafloor deformation produced a devastating tsunami that resulted in 5–10‐km inundation of the coastal plains, runup of up to 40 m along the Sanriku coastline, and catastrophic failure of the backup power systems at the Fukushima Daiichi nuclear power station, which precipitated a reactor meltdown and radiation release. About 18,131 lives appear to have been lost, 2829 people are still missing, and 6194 people were injured (as reported 28 September 2012 by the Fire and Disaster Management Agency of Japan) and over a half million were displaced, mainly due to the tsunami impact on coastal towns, where tsunami heights significantly exceeded harbor tsunami walls and coastal berms
    corecore