663 research outputs found

    Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker.

    Get PDF
    Most bacteria can only be transformed with circular plasmids, so robust DNA integration methods for these rely upon selection of single-crossover clones followed by counter-selection of double-crossover clones. To overcome the limited availability of heterologous counter-selection markers, here we explore novel DNA integration strategies that do not employ them, and instead exploit (i) activation or inactivation of genes leading to a selectable phenotype, and (ii) asymmetrical regions of homology to control the order of recombination events. We focus here on the industrial biofuel-producing bacterium Clostridium acetobutylicum, which previously lacked robust integration tools, but the approach we have developed is broadly applicable. Large sequences can be delivered in a series of steps, as we demonstrate by inserting the chromosome of phage lambda (minus a region apparently unstable in Escherichia coli in our cloning context) into the chromosome of C. acetobutylicum in three steps. This work should open the way to reliable integration of DNA including large synthetic constructs in diverse microorganisms. © 2011 The Author(s)

    Teacher Attitudes Toward the Mainstreaming of Exceptional Students: Effects of the Educational Climate

    Get PDF
    In the United States, PL 94-142 is now ten years old, and for a decade school districts have had the legal responsibility to provide for all exceptional children in the \u27least restrictive environment.\u27 However, the movement toward integrating exceptional children into regular classrooms is not restricted to the United States. Many countries have been exposed to a vigorous advocacy on.behalf of the handicapped for their right to enjoy an existence as close as possible to normal (Mitchell, 1981)

    Nonlinear propagation equations in fibers with multiple modes—Transitions between representation bases

    Get PDF
    The transverse pattern of the field that propagates in a fiber supporting multiple modes can always be described as a superposition of the patterns of the individual fiber modes. Yet, the use of other bases is often found to be more convenient, with the most famous example being that of linearly polarized modes in weakly guiding fibers. The nonlinear propagation equations contain coefficients that involve overlap integrals between the lateral profiles of multiple propagation modes. A fundamental question that has been raised in this context is whether it is legitimate to compute these coefficients from the overlap integrals between elements of alternative bases for the field representation. In this paper, we show that the answer to this question is positive in the most general sense. This result is significant in the context of space-division multiplexed transmission in multi-mode and multi-core fibers.The transverse pattern of the field that propagates in a fiber supporting multiple modes can always be described as a superposition of the patterns of the individual fiber modes. Yet, the use of other bases is often found to be more convenient, with the most famous example being that of linearly polarized modes in weakly guiding fibers. The nonlinear propagation equations contain coefficients that involve overlap integrals between the lateral profiles of multiple propagation modes. A fundamental question that has been raised in this context is whether it is legitimate to compute these coefficients from the overlap integrals between elements of alternative bases for the field representation. In this paper, we show that the answer to this question is positive in the most general sense. This result is significant in the context of space-division multiplexed transmission in multi-mode and multi-core fibers

    Experimental demonstration of gridless spectrum and time optical switching

    Get PDF
    An experimental demonstration of gridless spectrum and time switching is presented. We propose and demonstrate a bit-rate and modulation-format independent optical cross-connect architecture, based on gridless spectrum selective switch, 20-ms 3D-MEMS and 10-ns PLZT optical switches, that supports arbitrary spectrum allocation and transparent time multiplexing. The architecture is implemented in a four-node field-fiber-linked testbed to transport continuous RZ and NRZ data channels at 12.5, 42.7 and 170.8 Gb/s, and selectively groom sub-wavelength RZ channels at 42.7 Gb/s. We also showed that the architecture is dynamic and can be reconfigured to meet the routing requirements of the network traffic. Results show error-free operation with an end-to-end power penalty between 0.8 dB and 5 dB for all continuous and sub-wavelength channels

    LuxS-independent formation of AI-2 from ribulose-5-phosphate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many bacteria, the signal molecule AI-2 is generated from its precursor <it>S</it>-ribosyl-L-homocysteine in a reaction catalysed by the enzyme LuxS. However, generation of AI-2-like activity has also been reported for organisms lacking the <it>luxS </it>gene and the existence of alternative pathways for AI-2 formation in <it>Escherichia coli </it>has recently been predicted by stochastic modelling. Here, we investigate the possibility that spontaneous conversion of ribulose-5-phosphate could be responsible for AI-2 generation in the absence of <it>luxS</it>.</p> <p>Results</p> <p>Buffered solutions of ribulose-5-phosphate, but not ribose-5-phosphate, were found to contain high levels of AI-2 activity following incubation at concentrations similar to those reported <it>in vivo</it>. To test whether this process contributes to AI-2 formation by bacterial cells <it>in vivo</it>, an improved <it>Vibrio harveyi </it>bioassay was used. In agreement with previous studies, culture supernatants of <it>E. coli </it>and <it>Staphylococcus aureus luxS </it>mutants were found not to contain detectable levels of AI-2 activity. However, low activities were detected in an <it>E. coli pgi-eda-edd-luxS </it>mutant, a strain which degrades glucose entirely via the oxidative pentose phosphate pathway, with ribulose-5-phosphate as an obligatory intermediate.</p> <p>Conclusion</p> <p>Our results suggest that LuxS-independent formation of AI-2, via spontaneous conversion of ribulose-5-phosphate, may indeed occur <it>in vivo</it>. It does not contribute to AI-2 formation in wildtype <it>E. coli </it>and <it>S. aureus </it>under the conditions tested, but may be responsible for the AI-2-like activities reported for other organisms lacking the <it>luxS </it>gene.</p

    AI-2 does not function as a quorum sensing molecule in Campylobacter jejuni during exponential growth in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Campylobacter jejuni </it>contains a homologue of the <it>luxS </it>gene shown to be responsible for the production of the signalling molecule autoinducer-2 (AI-2) in <it>Vibrio harveyi </it>and <it>Vibrio cholerae</it>. The aim of this study was to determine whether AI-2 acted as a diffusible quorum sensing signal controlling <it>C. jejuni </it>gene expression when it is produced at high levels during mid exponential growth phase.</p> <p>Results</p> <p>AI-2 activity was produced by the parental strain NCTC 11168 when grown in rich Mueller-Hinton broth (MHB) as expected, but interestingly was not present in defined Modified Eagles Medium (MEM-α). Consistent with previous studies, the <it>luxS </it>mutant showed comparable growth rates to the parental strain and exhibited decreased motility halos in both MEM-α and MHB. Microarray analysis of genes differentially expressed in wild type and <it>luxS </it>mutant strains showed that many effects on mRNA transcript abundance were dependent on the growth medium and linked to metabolic functions including methionine metabolism. Addition of exogenously produced AI-2 to the wild type and the <it>luxS </it>mutant, growing exponentially in either MHB or MEM-α did not induce any transcriptional changes as analysed by microarray.</p> <p>Conclusion</p> <p>Taken together these results led us to conclude that there is no evidence for the role of AI-2 in cell-to-cell communication in <it>C. jejuni </it>strain NCTC 11168 under the growth conditions used, and that the effects of the <it>luxS </it>mutation on the transcriptome are related to the consequential loss of function in the activated methyl cycle.</p

    Remote Ischemic Preconditioning Neither Improves Survival nor Reduces Myocardial or Kidney Injury in Patients Undergoing Transcatheter Aortic Valve Implantation (TAVI)

    Get PDF
    BACKGROUND: Peri-interventional myocardial injury occurs frequently during transcatheter aortic valve implantation (TAVI). We assessed the effect of remote ischemic preconditioning (RIPC) on myocardial injury, acute kidney injury (AKIN) and 6-month mortality in patients undergoing TAVI. METHODS: We performed a prospective single-center controlled trial. Sixty-six patients treated with RIPC prior to TAVI were enrolled in the study and were matched to a control group by propensity-score. RIPC was applied to the upper extremity using a conventional tourniquet. Myocardial injury was assessed using high-sensitive troponin-T (hsTnT), and kidney injury was assessed using serum creatinine levels. Data were compared with the Wilcoxon-Rank and McNemar tests. Mortality was analysed with the log-rank test. RESULTS: TAVI led to a significant rise of hsTnT across all patients (p < 0.001). No significant inter-group difference in maximum troponin release or areas-under-the-curve was detected. Medtronic CoreValve and Edwards Sapien valves showed similar peri-interventional troponin kinetics and patients receiving neither valve did benefit from RIPC. AKIN occurred in one RIPC patient and four non-RIPC patients (p = 0.250). No significant difference in 6-month mortality was observed. No adverse events related to RIPC were recorded. CONCLUSION: Our data do not show a beneficial role of RIPC in TAVI patients for cardio- or renoprotection, or improved survival

    Optimization of cascaded regenerative links based on phase sensitive amplifiers

    Get PDF
    We develop an analytical method for optimizing phase sensitive amplifiers for regeneration in multilevel phase encoded transmission systems. The model accurately predicts the optimum transfer function characteristics and identifies operating tolerances for different signal constellations and transmission scenarios. The results demonstrate the scalability of the scheme and show the significance of having simultaneous optimization of the transfer function and the signal alphabet. The model is general and can be applied to any regenerative system
    corecore