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ABSTRACT
The transverse pattern of the field that propagates in a fiber supporting multiple modes can always be described as a superposi-
tion of the patterns of the individual fiber modes. Yet, the use of other bases is often found to be more convenient, with the most
famous example being that of linearly polarized modes in weakly guiding fibers. The nonlinear propagation equations contain
coefficients that involve overlap integrals between the lateral profiles of multiple propagation modes. A fundamental question
that has been raised in this context is whether it is legitimate to compute these coefficients from the overlap integrals between
elements of alternative bases for the field representation. In this paper, we show that the answer to this question is positive in
the most general sense. This result is significant in the context of space-division multiplexed transmission in multi-mode and
multi-core fibers.
© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5084118

I. INTRODUCTION
Nonlinear propagation in multi-mode optical fibers has

become a subject of utmost importance in the context of
space-division multiplexing (SDM) in fiber-optic communi-
cations systems. A comprehensive review and the derivation
of the underlying coupled nonlinear Schrödinger equations
(NLSEs) that govern propagation in ideal multi-mode fibers
has been published in Refs. 1–3, whereas the more realistic
case of long fibers in which significant random mode coupling
occurs was treated in Refs. 4–7, where the coupled nonlin-
ear Schrödinger equations are shown to reduce to the simpler
form of coupled multi-component Manakov equations. In both
cases, the parameters appearing in the equations that govern
the nonlinear propagation properties involve the computation
of overlap integrals between the various modes. Yet, while the
fiber modes rigorously form a basis for all the spatial pat-
terns that can be transmitted in the fiber channel, it is often
convenient to consider alternative bases for describing the
field evolution. A famous example is the concept of linearly
polarized (LP) modes, which are used almost exclusively

when considering propagation in realistic—weakly guiding—
communications fibers.8 The LP modes are not true modes of
the fiber in the sense that, even in the case of ideal fibers, these
modes couple into each other during propagation. Another
relevant example is the one of multi-core fibers with weakly
coupled cores,9 where the use of the modes of the individ-
ual cores—the local modes—is often preferred over the use
of the true modes of the fiber structure.10 Here too, the
local modes are not true modes and they couple into each
other during propagation.11 The question that presents itself
is whether it is acceptable to use the coupled multimode non-
linear Schrödinger equations1–3 or the multi-component Man-
akov equations,4–7 with nonlinearity coefficients that are com-
puted from the overlap integrals of lateral profile functions
that do not correspond to true fiber modes. This question
has been addressed recently in Ref. 12 specifically in the con-
text of the LP description of SDM fibers, and it was shown
that using the expressions for the LP11 lateral profile functions
derived within the weakly guiding approximation8 produces,
in the strong coupling regime, where propagation is described
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by the multi-component Manakov equation,4 the same results
as those obtained with the true fiber modes (TE, TM, and
HE21). In this paper, we rigorously show that this is a gen-
eral property, which is not restricted to the strong coupling
regime, and does not need to be tested for each alternative
basis separately. We prove that any set of lateral functions
that is obtained from a unitary superposition of the true fiber
modes is a legitimate basis for extracting the coefficients of
nonlinear propagation. This statement is correct regardless of
the weakly guiding approximation, and it is certainly true for
the LP representation of an arbitrary number of modes. It is
worth pointing out that this property has been used in Ref. 6
to predict that coupled-core multi-core fibers are character-
ized by a reduced nonlinear distortion as compared to parallel
single-mode fibers, a result of utmost importance confirmed
only recently in hero SDM experiments.13,14

II. NOTATION AND MODE BASES FOR THE ELECTRIC
FIELD REPRESENTATION

We express the electric field propagating in the optical
fiber as

~E(~r, t) = Re


∑
n

~Fn(x, y,ω0)
Nn(ω0)

En(z, t)e−iω0t

, (1)

where z is the propagation coordinate,ω0 is the central optical
frequency, n is the mode index, and En(z, t) is the correspond-
ing complex field envelope. By ~Fn(x, y,ω0), we denote the lat-
eral profile of the nth mode, i.e., the dependence of the gener-
ally three-component electric field vector on the transverse
fiber coordinates, and Nn(ω0) is a normalization coefficient
that is used to ensure that |En(z, t) |2 is the power (in watts)
carried by the nth mode. In Eq. (1), we use the fact that the sig-
nal bandwidth is much narrower than the central frequency
ω0 and that the frequency dependence of the mode lateral
profiles (and consequently of the normalization constants—see
below) is negligible within the signal bandwidth. The lateral
profiles of the modes are mutually orthogonal according to the
following definition of orthogonality:15∫

dxdy
(
~Fn × ~G∗m

)
· ẑ = 2N 2

n δn,m, (2)

where ~Gn is the lateral profile function of the magnetic field in
the nth fiber mode, δn ,m is the Kronecker delta, and ẑ denotes
a unit-length vector pointing in the field propagation direc-
tion. This relation implies that the following weaker relation
which is used for the extraction of the nonlinear propagation
equations2,3,6 is also satisfied:∫

dxdy
(
~Fn × ~G∗m + ~F∗m × ~Gn

)
· ẑ = 4N 2

n δn,m. (3)

The derivation of Eq. (2) in the absence of mode degener-
acy can be found in Ref. 15, and its extension to the case of
degenerate modes is presented in the Appendix of this work.

By defining normalized lateral profiles as

~fn(x, y,ω0) =
~Fn(x, y,ω0)
√

2Nn
, (4)

~gn(x, y,ω0) =
~Gn(x, y,ω0)
√

2Nn
, (5)

Eqs. (1) and (2) simplify to

~E(~r, t) =
√

2 Re


∑
n

~fn(x, y,ω0)En(z, t)e−iω0t

, (6)

∫
dxdy

(
~fn × ~g ∗m

)
· ẑ = δn,m. (7)

The electric field in Eq. (6) is expressed in terms of the true
fiber modes, which implies that in the absence of propaga-
tion effects, the complex envelopes evolve according to the
following simple equation:

∂Ẽn

∂z
= iβnẼn, (8)

where by the tilde we denote a Fourier transform, s̃(ω)
= ∫

+∞
−∞ s(t) exp(iωt)dt. A point which is relevant to the present

work is that the lateral profiles of the fiber modes form just
one basis for the representation of any propagating field’s
cross section. In fact, any other basis whose elements are
obtained as a unitary transformation of the lateral profile
functions of the modes would work as well. However, in
the latter case, the basis elements would not be propaga-
tion eigenstates, and they would couple even in the ideal
case of an unperturbed fiber. To illustrate this situation, we
consider the group of optical fiber modes HEeven

21 , HEodd
21 ,

TM01, and TE01, which have very similar propagation constants
and hence are usually referred to as quasi-degenerate,16

and define four lateral profiles using the following unitary
transformation:

~fLPeven
11x
=

1
√

2

(
~fHEeven

21
+~fTM01

)
, ~fLPodd

11x
=

1
√

2

(
~fHEodd

21
+~fTE01

)
, (9)

~fLPeven
11y
=

1
√

2

(
~fHEodd

21
−~fTE01

)
, ~fLPodd

11y
=

1
√

2

(
~fHEeven

21
−~fTM01

)
, (10)

which can be conveniently expressed as



~fLPeven
11x

~fLPodd
11x

~fLPeven
11y

~fLPodd
11y



=
1
√

2



1 0 1 0

0 1 0 1

0 1 0 −1

1 0 −1 0





~fHEeven
21

~fHEodd
21

~fTM01

~fTE01



= C



~fHEeven
21

~fHEodd
21

~fTM01

~fTE01



, (11)

where the unitary matrix C defined through the second equal-
ity describes the change of basis, connecting the LP and true-
mode representations. By using the above in Eq. (1), the cor-
responding complex envelopes are obtained in the following
form:



ẼLPeven
11x

ẼLPeven
11y

ẼLPodd
11x

ẼLPodd
11y



= C



ẼHEeven
21

ẼHEodd
21

ẼTM01

ẼTE01



. (12)

The new lateral profiles are the ones defined by Gloge.8 One
can check that they too fulfill the orthogonality condition
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(2), and they become linearly polarized in the weakly guiding
limit, which justifies the choice of denoting them by the let-
ters LP, as is schematically shown in Fig. 1. Note however that

treating the LP modes as truly degenerate is only an approxi-
mation, whereas in reality they evolve according to the follow-
ing equation:

∂

∂z



ẼLPeven
11x

ẼLPeven
11y

ẼLPodd
11x

ẼLPodd
11y



= iC



βHE21 0 0 0

0 βHE21 0 0

0 0 βTM01 0

0 0 0 βTE01



C†



ẼLPeven
11x

ẼLPeven
11y

ẼLPodd
11x

ẼLPodd
11y



=
i
2



βHE21 + βTM01 0 0 βHE21 − βTM01

0 βHE21 + βTE01 βHE21 − βTE01 0

0 βHE21 − βTE01 βHE21 + βTE01 0

βHE21 − βTM01 0 0 βHE21 + βTM01





ẼLPeven
11x

ẼLPeven
11y

ẼLPodd
11x

ẼLPodd
11y



, (13)

which is obtained by combining Eqs. (8) and (12) and by
using the unitarity property CC† = I. Equation (13) shows
that the four modes are coupled in pairs (specifically, cou-
pling involves pairs that that are formed by the same pair
of true modes), and hence even if only one of them is
excited at the fiber input, other modes are excited in the
process of propagation and hence the field lateral profile
changes, contrary to what happens with true modes.17 As
an example, if one excites LPeven

11x at the fiber input (z = 0),
then both the modes LPeven

11x and LPodd
11y will be excited as

follows:

ẼLPeven
11x
= eiβ0z cos(∆βz)Ẽin, (14)

ẼLPodd
11y
= ieiβ0z sin(∆βz)Ẽin, (15)

where Ẽin is the input excitation, β0 = ( βHE21 + βTM01 )/2, and
∆β = ( βHE21 − βTM01 )/2. In this situation, the field propagating
along the fiber is proportional to

cos(∆βz)~fLPeven
11x

(x, y) + i sin(∆βz)~fLPodd
11y

(x, y), (16)

which shows that the field’s lateral profile evolves along the
fiber from the shape of a pair of vertical kidneys (LPeven

11x )
at ∆βz = kπ, to that of a pair of horizontal kidneys at ∆βz
= (2k + 1)π/2, and to that of a doughnut at ∆βz = (2k + 1)
π/4 (k = 0, 1, 2, 3, . . .). This evolution is illustrated in
Fig. 2.

Keeping the above discussion in mind, in what follows, we
will distinguish between true fiber modes, to which we will
simply refer as modes, and generic bases that can be used
to represent locally the lateral profile of the field propagating
along the fiber. In this context, the LP representation belongs
to the latter category.

III. BASIS INDEPENDENCE OF NONLINEAR
PROPAGATION IN MULTI-MODE FIBERS

The electric field propagation in fibers is conveniently
described by introducing a column vector ~E(z, t) constructed
by stacking the complex envelopes En(z, t) of locally orthogo-
nal field distributions on top of each other. Consistent with
our previous work,18 we assume that the fiber supports

FIG. 1. The lateral profiles obtained by linearly combining those of the HEeven
21 , HEodd

21 , TM01, and TE01 modes of a step-index fiber are almost linearly polarized. In the
regime of weak guidance, they are very close to the LP modes defined by Gloge.8,12
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FIG. 2. Evolution of the mode lateral profile that is seen by exciting LPeven
11x only at the fiber input.

2N scalar modes. Note that while in principle the number of
supported modes does not have to be even, in practice, quasi-
degenerate modes, which if guided have very similar propa-
gation constants, always come in pairs with very close cut-off
frequencies (one example is the TM01/TE01 mode pair illus-
trated in Sec. II), and it is practically impossible to guide only
one member of that pair and suppress the other (clearly this
consideration does not apply to fibers that are designed for
operation in a strong guiding regime and to specialty fibers
with unconventional geometry19,20 and/or refractive-index
profile).

We start by recalling the equation describing linear prop-
agation in the Fourier domain, which can be expressed as

∂~̃E
∂z
= −

α

2
~̃E + iB~̃E, (17)

where α is the fiber loss coefficient and B(z, ω) is a 2N × 2N
matrix. In this work, we neglect mode-dependent loss21

(MDL), in which case propagation is unitary so that B is Her-
mitian.22–24 The frequency dependence of B can be adequately
accounted for by a second-order Taylor expansion

B(z,ω) ' B(0) +ωB(1) +
ω2

2
B(2). (18)

In ideal fibers, B is diagonal in the basis of the true fiber
modes, as in the example of Eq. (7), and so are its frequency
derivatives. In this case, the nonzero elements of B(0) are the
propagation constants βn, those of B(1) are the inverse group
velocities β′n = 1/vg,n, and those of B(2) are the chromatic dis-
persion (CD) coefficients β′′n of the individual modes. In real
(non-ideal) fibers, B typically contains non-diagonal perturba-
tion terms that account for unavoidable manufacturing imper-
fections of the fiber itself as well as for mode coupling due
to stress induced by cabling and deployment. Specifically, B(0)

and B(1) describe position-dependent random-mode coupling
and modal dispersion, respectively, whereas B(2) accounts for
the modal dependence of the fiber chromatic dispersion. The
perturbations of B(2) have a negligible effect relative to the
effect of the perturbations in B(0) and B(1), and hence it is legit-
imate to ignore the off-diagonal terms of B(2) in the true-mode
representation.

We are now ready to introduce the coupled nonlinear
Schrödinger equations, which account for linear and nonlinear

propagation phenomena

∂~E
∂z
= −

α

2
~E + iB(0)~E − B(1) ∂

~E
∂t

+
iB(2)

2
∂2~E
∂t2

+ iγ
∑
n

∑
h,k,m

CnhkmE
∗

hEkEmên. (19)

The 2nd–4th terms on the right-hand side of Eq. (19) are
the time-domain counterparts of the corresponding terms in
Eq. (18), and the last term accounts for nonlinear propagation.
The term ên represents a unit vector in the nth direction of the
2N-dimensional field-vector space, and γ is the familiar fiber
nonlinearity coefficient, whose expression can be found in
Ref. 6. For the sake of clarity in this work, we only consider the
instantaneous Kerr nonlinearity of fibers (more general equa-
tions accounting also for the Raman effect can be found in
Ref. 6). In this case, the coefficients Cnhkm have the form6

Cnhkm =
Aeffn2

eff

12Z2
0

(2Qnhkm + Rnhkm), (20)

where Aeff and neff are the effective area and refractive index,
respectively, of the fundamental mode. The terms Qnhkm and
Rnhkm, whose expressions were given in Ref. 6, can be re-
written as

Qnhkm = 4
∫

dxdy(~f∗n ·~fm)(~f∗h ·
~fk), (21)

Rnhkm = 4
∫

dxdy(~f∗n ·~f
∗

h)(~fm ·~fk). (22)

A subtle point that needs to be clarified relates to the fact that
the coupled NLSEs are obtained by representing the field in
the basis of the fiber’s true modes.6 In what follows, we show
that the same form holds when the field is represented in a
basis of lateral profile functions that are obtained from a uni-
tary combination of the true modes, which, as discussed in the
context of the LP modes example in Sec. II, are not propaga-
tion modes of the fiber (excluding cases where the true fiber
modes are degenerate). In particular, we show that the expres-
sions of the nonlinearity coefficients in Eqs. (21) and (22) do not
change when transitioning from one basis to another. To this
end, similarly to what we have done in Eq. (11), we introduce
the 2N × 2N unitary matrix C with elements ci ,j so that a new
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set of basis functions is defined as follows

~ϕk =

2N∑
l=1

ck,l
~fl, ~ξk =

2N∑
l=1

ck,l~gl. (23)

An important property of the transformation in Eq. (23) is that
the basis functions ~ϕk and ~ξk fulfill the orthogonality condi-
tion in Eq. (7), as can be shown by direct substitution. The
corresponding inverse relations, obtained using CC† = I, are

~fk =
2N∑
l=1

c∗l,k ~ϕl, ~gk =
2N∑
l=1

c∗l,k ~ξl. (24)

We use the same matrix to define a rotated field vector ~A = C∗~E
(note that C∗ is also a unitary matrix) so that

Al =

2N∑
k=1

c∗l,kEk. (25)

It can be easily checked that these definitions are consistent
with the following equality between the two field expansions:

2N∑
n=1

En
~fn =

2N∑
n=1

An ~ϕn. (26)

We now replace ~fk in Eqs. (21) and (22) with its expression in
Eq. (24) and express the nonlinear term as

iγ
Aeffn2

eff

12Z2
0

∑
n

∑
h,k,m

4
∑
l

c∗l,k

[
2
∫

dxdy(~f∗n ·~fm)(~f∗h · ~ϕl)

+
∫

dxdy(~f∗n ·~f
∗

h)(~fm · ~ϕl)
]
E∗hEkEmên

= iγ
Aeffn2

eff

12Z2
0

∑
n

∑
h,l,m

4
[
2
∫

dxdy(~f∗n ·~fm)(~f∗h · ~ϕl)

+
∫

dxdy(~f∗n ·~f
∗

h)(~fm · ~ϕl)
]
E∗hEm

*.
,

∑
k

c∗l,kEk
+/
-
ên, (27)

and, using Eq. (25), as

iγ
Aeffn2

eff

12Z2
0

∑
n

∑
h,l,m

4
[
2
∫

dxdy(~f∗n ·~fm)(~f∗h · ~ϕl)

+
∫

dxdy(~f∗n ·~f
∗

h)(~fm · ~ϕl)
]
E∗hEmAlên. (28)

Repeating the same procedure with the expansion of ~fh, ~fm,
and~fn yields

iγ
Aeffn2

eff

12Z2
0

∑
r

∑
p,l,q

4
[
2
∫

dxdy(~ϕ∗r · ~ϕq)(~ϕ∗p · ~ϕl)

+
∫

dxdy(~ϕ∗r · ~ϕ
∗
p)(~ϕq · ~ϕl)

]
A∗pAqAlûr, (29)

where

ûr = *
,

∑
n

cn,rên+
-
. (30)

It can be easily verified that the vectors ûr are orthogonal unit
vectors, with r = 1, . . ., 2N. More specifically, the vector ûr
describes the hyper-polarization of a field characterized by
a state vector ~A whose only nonzero component is Ar. As a
result, the propagation equation for ~A is assumes the following
form:

∂~A
∂z
= −

α

2
~A + iC∗B(0)Ct~A − C∗B(1)Ct ∂

~A
∂t

+
iC∗B(2)Ct

2
∂2~A
∂t2

+ iγ
∑
n

∑
h,k,m

C(~A)
nhkmA

∗

hAkAmûn, (31)

where

C(~A)
nhkm =

Aeffn2
eff

12Z2
0

(
2Q(~A)

nhkm + R(~A)
nhkm

)
, (32)

Q(~A)
nhkm = 4

∫
dxdy(~ϕ∗n · ~ϕm)(~ϕ∗h · ~ϕk), (33)

R(~A)
nhkm = 4

∫
dxdy(~ϕ∗n · ~ϕ

∗

h)(~ϕm · ~ϕk) (34)

and where we used the unitarity property C∗Ct = I, which
is obtained by taking the complex conjugate of CC† = I. The
comparison of Eqs. (32)–(34) with Eqs. (20)–(22) confirms that
the nonlinearity coefficients have the same form in the two
representations.

We note that the fact that the choice of representation
bases has no effect on the functional form of the nonlinearity
coefficients does not imply that all bases are equally conve-
nient. In general, it is always advisable to choose a basis that
best adheres to the properties of the fiber structure. This point
is particularly important in the case where the fiber supports
uncoupled groups of strongly coupled modes, where it would
be extremely inconvenient to adopt a representation basis
whose elements result from combinations of modes belonging
to different groups. Even though the coupled NLSEs remain
correct in this unnatural representation basis, their use would
produce strong deterministic linear coupling between quasi
degenerate mode groups, thereby preventing their reduction
to the much simpler form of the familiar weakly coupled multi-
component Manakov equations,5,6 obscuring the characteris-
tics of the propagation problem. Indeed, the coupled Manakov
equations can only be obtained when each basis element in the
representation can be expressed as a superposition of prop-
agation modes belonging to a single mode-group. Moreover,
the coupled Manakov equations that will be obtained with any
one of such representations will have the exact same coef-
ficients. In order to demonstrate this, we recall the expres-
sion for the averaged nonlinearity coefficients that appear
in the coupled Manakov equations for two mode groups
Ij and Il

κjl =
∑
n∈Il

∑
h∈Ij

Cnhhn + Cnhnh

2Nl(2Nj + δlj)
. (35)

The invariance of κjl to the choice of basis follows from the
four equalities:

APL Photon. 4, 022806 (2019); doi: 10.1063/1.5084118 4, 022806-5

© Author(s) 2019

https://scitation.org/journal/app


APL Photonics ARTICLE scitation.org/journal/app

∑
n∈Il

∑
h∈Ij

Qnhhn =
∑
n∈Il

∑
h∈Ij

Q(~A)
nhhn,

∑
n∈Il

∑
h∈Ij

Rnhhn =
∑
n∈Il

∑
h∈Ij

R(~A)
nhhn,

(36)

∑
n∈Il

∑
h∈Ij

Qnhnh =
∑
n∈Il

∑
h∈Ij

Q(~A)
nhnh,

∑
n∈Il

∑
h∈Ij

Rnhnh =
∑
n∈Il

∑
h∈Ij

R(~A)
nhnh.

(37)

To prove the first, we substitute the expansion~fn =
∑

p∈Il
c∗p,n ~ϕp

into the expression for Qnhhn,

Qnhhn = 4
∫

dxdy(~f∗n ·~fn)(~f∗h ·
~fh)

= 4
∑

p,q∈Il

cp,nc∗q,n

∫
dxdy( ~ϕ∗p · ~ϕq)(~f∗h ·

~fh), (38)

and using
∑

n∈Il
cp,nc∗q,n = δpq, we obtain∑

n∈Il

Qnhhn =
∑
p∈Il

∫
dxdy(~ϕ∗p · ~ϕp)(~f∗h ·

~fh). (39)

Repeating the same procedure with ~fh =
∑

p∈Ij
c∗p,h ~ϕp yields∑

n∈Il

∑
h∈Ij

Qnhhn =
∑

p∈Il

∑
q∈Ij

Q(~A)
pqqp. The second to fourth

equalities in Eqs. (36) and (37) can be proven in a similar way,

which leads to the conclusion κjl = κ
(~A)
jl . This result generalizes

the result obtained in Ref. 12 in the specific case of the LP11
representation.

IV. CONCLUSIONS
The equations that govern nonlinear propagation in

multi-mode fiber structures contain nonlinearity coefficients
that involve overlap integrals between the lateral profile func-
tions of the fiber modes. In this work, we have shown the
legitimacy of extracting these coefficients from overlap inte-
grals using alternative profile functions for the field represen-
tation that do not correspond to the propagation modes of the
fiber, but satisfy the mode orthogonality condition. In particu-
lar, this justifies the use of the LP representation for evaluating
the characteristics of nonlinear propagation in SDM systems.
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APPENDIX: ORTHOGONALITY CONDITION
FOR DEGENERATE MODES

The goal of this section is to prove the following orthogo-
nality condition:∫

dxdy
(
~Fn × ~G∗m

)
· ẑ = 2N 2

n δn,m, (A1)

for two degenerate modes, namely, for two modes charac-
terized by the same propagation constant β. Consistent with
our previous work,6 in doing so, we use the power conserva-
tion argument. This approach is more intuitive, but not less
rigorous than manipulating Maxwell’s equations directly.

We start by recalling that the power carried by the nth
mode for an excitation characterized by the complex envelope
En is given by

Pn =
1
2

Re



∫
dxdy*

,
En

~Fn
Nn

eiβz+
-
× *
,
En

~Gn

Nn
eiβz+

-

∗

· ẑ



=
|En |

2

4N 2
n

∫
dxdy

(
~Fn,t × ~G∗n,t + ~F∗n,t ×

~Gn,t
)
· ẑ, (A2)

where in the second equality the subscript t is used to denote
the transverse components of ~Fn and ~Gn, which are orthogonal
to the propagation axis so that

~Fn = ~Fn,t + Fn,zẑ, (A3)

~Gn = ~Gn,t + Gn,zẑ. (A4)

If, as assumed throughout the paper, the power in watts car-
ried by the nth mode is Pn = |En |

2, then the normalization
constant is defined through the equality

Re
{∫

dxdy
(
~Fn,t × ~G∗n,t

)
· ẑ

}
= 2N 2

n . (A5)

The z-reversal symmetry of Maxwell’s equations implies that
the z-reversed fields defined as

z-reversal : ~Fn → ~Fn,t − Fn,zẑ; ~Gn → −~Gn,t + Gn,zẑ (A6)

also constitute a legitimate mode propagating in the backward
direction. We then compute the net power flow across the
fiber section when mode n and its z-reversed counterpart are
both present with complex amplitudes Ef ,n and Eb ,n, respec-
tively (note that z-reversal does not affect the normalization
constant Nn),

P =
1

2N 2
n

Re
{∫

dxdy
(
Ef,n

~Fn,teiβz + Eb,n
~Fn,te−iβz

)
×

(
Ef,n

~Gn,teiβz − Eb,n
~Gn,te−iβz

)∗
· ẑ

}
= |Ef,n |

2 − |Eb,n |
2 −

1

2N 2
n

Real
{
e2iβzEf,nE

∗

b,n

×

∫
dxdy

(
~Fn,t × ~G∗n,t −

~F∗n,t ×
~Gn,t

)
· ẑ

}
. (A7)

The first and second term account for the power carried by the
counter-propagating fields, whereas the third term introduces
unphysical power fluctuations whose elimination yields

0 =
∫

dxdy
(
~Fn,t × ~G∗n,t −

~F∗n,t ×
~Gn,t

)
· ẑ, (A8)

or, equivalently,

Im
{∫

dxdy
(
~Fn,t × ~G∗n,t

)
· ẑ

}
= 0. (A9)
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The above, combined with Eq. (A3), proves Eq. (A1) for n = m.
For the case n ,m, we consider the backward propagating

field constructed by applying z-reversal to the mth mode. In
this case, the net power flow is given by

P =
1
2

Re



∫
dxdy*

,
En

~Fn,t

Nn
eiβz + Em

~Fm,t

Nm
e−iβz+

-

× *
,
En

~Gn,t

Nn
eiβz − Em

~Gm,t

Nn
e−iβz+

-

∗

· ẑ



= |En |
2 − |Em |

2 −
1

2NnNm
Re

{
e2iβzEnE∗m

×

∫
dxdy

(
~Fn,t × ~G∗m,t −

~F∗m,t ×
~Gn,t

)
· ẑ

}
, (A10)

and forcing the coefficient of exp{2iβz} to zero yields∫
dxdy

(
~Fn,t × ~G∗m,t −

~F∗m,t ×
~Gn,t

)
· ẑ = 0. (A11)

A backward propagating wave can also be constructed by
using the t-reversal symmetry of Maxwell equations,

t − reversal : ~Fn → ~F∗n,t + F∗n,zẑ; ~Gn → −~G∗n,t −G
∗
n,zẑ, (A12)

which with the procedure used to obtain Eq. (A11) yields∫
dxdy

(
~Fn,t × ~Gm,t + ~Fm,t × ~Gn,t

)
· ẑ = 0. (A13)

Equations (A11) and (A13) do not imply Eq. (A1) yet. To make
the final step, we note that application of z- and t-reversal to
the nth mode yields a degenerate forward propagating mode,
which we denote with nc

~Fnc =
~F∗n,t − F

∗
n,zẑ, (A14)

~Gnc =
~G∗n,t −G

∗
n,zẑ. (A15)

Mode n and nc have the respective transverse components
of the lateral profile functions that are the conjugate of
each other, and for this reason, we refer to them as con-
jugate modes. Application of Eq. (A13) to modes nc and m
yields ∫

dxdy
(
~F∗n,t ×

~Gm,t + ~Fm,t × ~G∗n,t

)
· ẑ = 0, (A16)

or, equivalently,∫
dxdy

(
~Fn,t × ~G∗m,t + ~F∗m,t ×

~Gn,t
)
· ẑ = 0. (A17)

The sum of Eqs. (A11) and (A17) gives the orthogonality condi-
tion (A1).
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