13,935 research outputs found

    Enacting Productive Dialogue: Addressing the Challenge that Non-Human Cognition Poses to Collaborations Between Enactivism and Heideggerian Phenomenology

    Get PDF
    This chapter uses one particular proposal for interdisciplinary collaboration – in this case, between early Heideggerian phenomenology and enactivist cognitive science – as an example of how such partnerships may confront and negotiate tensions between the perspectives they bring together. The discussion begins by summarising some of the intersections that render Heideggerian and enactivist thought promising interlocutors for each other. It then moves on to explore how Heideggerian enactivism could respond to the challenge of reconciling the significant differences in the ways that each discourse seeks to apply the structures it claims to uncover

    The ToF and Trigger electronics of the PAMELA experiment

    Get PDF
    The PAMELA satellite-borne experiment, scheduled to be launched in 2004, is designed to provide a better understanding of the antimatter component of the cosmic rays. Its ToF scintillator system will provide the primary experimental trigger and time-of-flight particle identification. The time resolution requested is σ, < 120 ps. To fulfill the detector requirements the digitization electronics should have a time resolution ≤ 50 ps and provide a wide dynamic range for charge measurements. The peculiarity of the developed electronics arises from the need to obtain such a time resolution operating in a satellite environment, which implies low-power consumption, radiation hardness, redundancy and high reliability

    Order parameter for two-dimensional critical systems with boundaries

    Full text link
    Conformal transformations can be used to obtain the order parameter for two-dimensional systems at criticality in finite geometries with fixed boundary conditions on a connected boundary. To the known examples of this class (such as the disk and the infinite strip) we contribute the case of a rectangle. We show that the order parameter profile for simply connected boundaries can be represented as a universal function (independent of the criticality model) raised to the power eta/2. The universal function can be determined from the Gaussian model or equivalently a problem in two-dimensional electrostatics. We show that fitting the order parameter profile to the theoretical form gives an accurate route to the determination of eta. We perform numerical simulations for the Ising model and percolation for comparison with these analytic predictions, and apply this approach to the study of the planar rotor model.Comment: 10 pages, 14 figures. Revisions: Removed many typos, improved presentation of most of the figure

    Very High Resolution Solar X-ray Imaging Using Diffractive Optics

    Full text link
    This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the \geq10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of \approx10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics. We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of \approx100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane \approx100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission

    Aspects of particle production in isospin asymmetric matter

    Full text link
    The production/absorption rate of particles in compressed and heated asymmetric matter is studied using a Relativistic Mean Field (RMF) transport model with an isospin dependent collision term. Just from energy conservation in the elementary production/absorption processes we expect to see a strong dependence of the yields on the basic Lorentz structure of the isovector effective interaction, due to isospin effects on the scalar and vector self-energies of the hadrons. This will be particularly evident for the ratio of the rates of particles produced with different charges: results are shown for \pi(+)/\pi(-), K(+)/K(0) yields. In order to simplify the analysis we perform RMF cascade simulations in a box with periodic boundary conditions. In this way we can better pin down all such fine relativistic effects in particle production, that could likely show up even in realistic heavy ion collisions. In particular, K(+,0) production is expected to be directly related to the high density behaviour of the symmetry energy, since kaons are produced very early during the high density stage of the collision and their mean free path is rather large. We show that the K(+)/K(0) ratio reflects important isospin contributions on the production rates just because of the large sensitivity around the threshold. The results are very promising for the possibility of a direct link between particle production data in exotic Heavy Ion Collisions and the isospin dependent part of the Equation of State at high baryon densities.Comment: 26 pages, 8 figures; Nucl.Phys. A, accepte

    An advanced seismic network in the Southern Apennines (Italy) for seismicity investigations and experimentation with earthquake early warning.

    Get PDF
    The last strong earthquake that occurred in the southern Apennines, the Irpinia earthquake on 23 November 1980 (M 6.9), was characterized by a complex rupture mechanism that ruptured three different faults (Bernard and Zollo 1989). This earthquake was well studied, and the quantity of data available has allowed a very detailed definition of the geometry and mechanisms of faults activated during this seismic event (Westaway and Jackson 1987; Pantosti and Valensise 1990). Even more than 20 years after the main event, the seismotectonic environment that contains the fault system on which the 1980 earthquake occurred shows continued background seismic activity including moderate-sized events such as the 1996 (M 5.1), 1991 (M 5.1) and 1990 (M 5.4) events. Moreover, the locations of the microearthquakes (taken from the database of the Istituto Nazionale di Geofisica e Vulcanologia, INGV) define an epicentral area with a geometry and extent surprisingly similar to that of the 1980 earthquake and its aftershocks (figure 1A). These simple observations suggest that it may be possible to study the preparation cycles of strong earthquakes on active faults by studying the microseismicity between seismic events. With this in mind, a seismic network of large dynamic range was planned and is now in an advanced phase of completion in the southern Apennines. Called ISNet (Irpinia Seismic Network), it is equipped with sensors that can record high-quality seismic signals from both small-magnitude and strong earthquakes, from which it will be possible to retrieve information about the rupture process and try to understand the scaling relationships between small and large events. Due to its high density, wide dynamic range, and advanced data-acquisition and data-transmission technologies, the network is being upgraded to become the core infrastructure of a prototype system for seismic early warning and rapid post-event ground-shaking evaluation in the Campania region, which has seismic hazard that ranks among the highest in Italy (Cinti et al. 2004). ISNet will be devoted to real-time estimation of earthquake location and magnitude and to measuring peak ground-motion parameters so as to provide rapid ground-shaking maps for the whole of the Campania region. The information provided by ISNet during the first seconds of a potentially damaging seismic event can be used to activate several types of security measures, such as the shutdown of critical systems and lifelines (Iervolino et al. 2006). The implementation of a modern seismic network involves many different research and technological aspects related to the development of sophisticated data management and processing. The communication systems need to rapidly generate useful, robust, and secure alert notifications. Here we provide a general technical and seismological overview of ISNet's complex architecture and implementation.Published622-6344.1. Metodologie sismologiche per l'ingegneria sismicaJCR Journalreserve

    Direct mass measurements beyond the proton drip-line

    Get PDF
    First on-line mass measurements were performed at the SHIPTRAP Penning trap mass spectrometer. The masses of 18 neutron-deficient isotopes in the terbium-to-thulium region produced in fusion-evaporation reactions were determined with relative uncertainties of about 7⋅10−87\cdot 10^{-8}, nine of them for the first time. Four nuclides (144,145^{144, 145}Ho and 147,148^{147, 148}Tm) were found to be proton-unbound. The implication of the results on the location of the proton drip-line is discussed by analyzing the one-proton separation energies
    • …
    corecore