139 research outputs found

    Deletion of the GABAA α2-subunit does not alter self dministration of cocaine or reinstatement of cocaine seeking

    Get PDF
    Rationale GABAA receptors containing α2-subunits are highly represented in brain areas that are involved in motivation and reward, and have been associated with addiction to several drugs, including cocaine. We have shown previously that a deletion of the α2-subunit results in an absence of sensitisation to cocaine. Objective We investigated the reinforcing properties of cocaine in GABAA α2-subunit knockout (KO) mice using an intravenous self-administration procedure. Methods α2-subunit wildtype (WT), heterozygous (HT) and KO mice were trained to lever press for a 30 % condensed milk solution. After implantation with a jugular catheter, mice were trained to lever press for cocaine (0.5 mg/kg/infusion) during ten daily sessions. Responding was extinguished and the mice tested for cue- and cocaine-primed reinstatement. Separate groups of mice were trained to respond for decreasing doses of cocaine (0.25, 0.125, 0.06 and 0.03 mg/kg). Results No differences were found in acquisition of lever pressing for milk. All genotypes acquired self-administration of cocaine and did not differ in rates of self-administration, dose dependency or reinstatement. However, whilst WT and HT mice showed a dose-dependent increase in lever pressing during the cue presentation, KO mice did not. Conclusions Despite a reported absence of sensitisation, motivation to obtain cocaine remains unchanged in KO and HT mice. Reinstatement of cocaine seeking by cocaine and cocaine-paired cues is also unaffected. We postulate that whilst not directly involved in reward perception, the α2-subunit may be involved in modulating the “energising” aspect of cocaine’s effects on reward-seeking

    Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation

    Get PDF
    Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum

    Stigmatisation et VIH : tous concernés [Stigma and HIV: relevant for everyone]

    Get PDF
    Medical advances in the treatment of HIV over the last 35 years mean that people living with HIV (PLHIV) now have a life expectancy close to that of the general population. Further, when successfully treated, PLHIV cannot transmit the virus. Despite this, HIV-related stigma remains widespread, including within healthcare settings. Stigma is not a vague sociological notion but represents a real threat to public health, with repercussions for both PLHIV and HIV-negative individuals. Stigma has been shown to have a negative impact on HIV prevention, testing, access to health services, and on the healthcare management of PLHIV. Taking stigma into consideration is essential, both in meeting the medical and psycho-social needs of PLHIV and in order to effectively combat HIV/AIDS

    Prolonged dopamine signalling in striatum signals proximity and value of distant rewards

    Get PDF
    Predictions about future rewarding events have a powerful influence on behaviour. The phasic spike activity of dopamine-containing neurons, and corresponding dopamine transients in the striatum, are thought to underlie these predictions, encoding positive and negative reward prediction errors. However, many behaviours are directed towards distant goals, for which transient signals may fail to provide sustained drive. Here we report an extended mode of reward-predictive dopamine signalling in the striatum that emerged as rats moved towards distant goals. These dopamine signals, which were detected with fast-scan cyclic voltammetry (FSCV), gradually increased or—in rare instances—decreased as the animals navigated mazes to reach remote rewards, rather than having phasic or steady tonic profiles. These dopamine increases (ramps) scaled flexibly with both the distance and size of the rewards. During learning, these dopamine signals showed spatial preferences for goals in different locations and readily changed in magnitude to reflect changing values of the distant rewards. Such prolonged dopamine signalling could provide sustained motivational drive, a control mechanism that may be important for normal behaviour and that can be impaired in a range of neurologic and neuropsychiatric disorders.National Institutes of Health (U.S.) (Grant R01 MH060379)National Parkinson Foundation (U.S.)Cure Huntington’s Disease Initiative, Inc. (Grant A-5552)Stanley H. and Sheila G. Sydney Fun

    Floral advertisement scent in a changing plant-pollinators market

    Get PDF
    Plant-pollinator systems may be considered as biological markets in which pollinators choose between different flowers that advertise their nectar/pollen rewards. Although expected to play a major role in structuring plant-pollinator interactions, community-wide patterns of flower scent signals remain largely unexplored. Here we show for the first time that scent advertisement is higher in plant species that bloom early in the flowering period when pollinators are scarce relative to flowers than in species blooming later in the season when there is a surplus of pollinators relative to flowers. We also show that less abundant flowering species that may compete with dominant species for pollinator visitation early in the flowering period emit much higher proportions of the generalist attractant β-ocimene. Overall, we provide a first community-wide description of the key role of seasonal dynamics of plant-specific flower scent emissions, and reveal the coexistence of contrasting plant signaling strategies in a plant-pollinator market

    Fear expression is suppressed by tyrosine administration

    Get PDF
    Animal studies have demonstrated that catecholamines regulate several aspects of fear conditioning. In humans, however, pharmacological manipulations of the catecholaminergic system have been scarce, and their primary focus has been to interfering with catecholaminergic activity after fear acquisition or expression had taken place, using L-Dopa, primarily, as catecholaminergic precursor. Here, we sought to determine if putative increases in presynaptic dopamine and norepinephrine by tyrosine administered before conditioning could affect fear expression. Electrodermal activity (EDA) of 46 healthy participants (24 placebo, 22 tyrosine) was measured in a fear instructed task. Results showed that tyrosine abolished fear expression compared to placebo. Importantly, tyrosine did not affect EDA responses to the aversive stimulus (UCS) or alter participants' mood. Therefore, the effect of tyrosine on fear expression cannot be attributed to these factors. Taken together, these findings provide evidence that the catecholaminergic system influences fear expression in humans

    Reliance on habits at the expense of goal-directed control following dopamine precursor depletion

    Get PDF
    Rationale Dopamine is well known to play an important role in learning and motivation. Recent animal studies have implicated dopamine in the reinforcement of stimulus-response habits, as well as in flexible, goal-directed action. However, the role of dopamine in human action control is still not well understood. Objectives We present the first investigation of the effect of reducing dopamine function in healthy volunteers on the balance between habitual and goal-directed action control. Methods The dietary intervention of acute dietary phenylalanine and tyrosine depletion (APTD) was adopted to study the effects of reduced global dopamine function on action control. Participants were randomly assigned to either the APTD or placebo group (ns = 14) to allow for a between-subjects comparison of performance on a novel three-stage experimental paradigm. In the initial learning phase, participants learned to respond to different stimuli in order to gain rewarding outcomes. Subsequently, an outcome-devaluation test and a slips-of-action test were conducted to assess whether participants were able to flexibly adjust their behaviour to changes in the desirability of the outcomes. Results APTD did not prevent stimulus-response learning, nor did we find evidence for impaired response-outcome learning in the subsequent outcome-devaluation test. However, when goal-directed and habitual systems competed for control in the slips-of-action test, APTD tipped the balance towards habitual control. These findings were restricted to female volunteers. Conclusions We provide direct evidence that the balance between goal-directed and habitual control in humans is dopamine dependent. The results are discussed in light of gender differences in dopamine function and psychopathologies

    Occasion setters determine responses of putative DA neurons to discriminative stimuli

    Get PDF
    Midbrain dopamine (DA) neurons are involved in the processing of rewards and reward-predicting stimuli, possibly analogous to reinforcement learning reward prediction errors. Here we studied the activity of putative DA neurons (n=37) recorded in the ventral tegmental area of rats (n=6) performing a behavioural task involving occasion setting. In this task an occasion setter (OS) indicated that the relationship between a discriminative stimulus (DS) and reinforcement is in effect, so that reinforcement of bar pressing occurred only after the OS (tone or houselight) was followed by the DS (houselight or tone). We found that responses of putative DA cells to the DS were enhanced when preceded by the OS, as were behavioural responses to obtain rewards. Surprisingly though, we did not find a homogeneous increase in the mean activity of the population of putative DA neurons to the OS, contrary to predictions of standard temporal-difference models of DA neurons. Instead, putative DA neurons exhibited a heterogeneous response on a single unit level, so that some units increased and others decreased their activity as a response to the OS. Similarly, putative non-DA cells did not show a homogeneous response to the DS on a population level, but also had heterogeneous responses on a single unit level. The heterogeneity in the responses of neurons in the ventral tegmental area may reflect how DA neurons encode context and point to local differences in DA signalling
    corecore