389 research outputs found

    The Affective Impact of Financial Skewness on Neural Activity and Choice

    Get PDF
    Few finance theories consider the influence of “skewness” (or large and asymmetric but unlikely outcomes) on financial choice. We investigated the impact of skewed gambles on subjects' neural activity, self-reported affective responses, and subsequent preferences using functional magnetic resonance imaging (FMRI). Neurally, skewed gambles elicited more anterior insula activation than symmetric gambles equated for expected value and variance, and positively skewed gambles also specifically elicited more nucleus accumbens (NAcc) activation than negatively skewed gambles. Affectively, positively skewed gambles elicited more positive arousal and negatively skewed gambles elicited more negative arousal than symmetric gambles equated for expected value and variance. Subjects also preferred positively skewed gambles more, but negatively skewed gambles less than symmetric gambles of equal expected value. Individual differences in both NAcc activity and positive arousal predicted preferences for positively skewed gambles. These findings support an anticipatory affect account in which statistical properties of gambles—including skewness—can influence neural activity, affective responses, and ultimately, choice

    Analysis of the rotation period of asteroids (1865) Cerberus, (2100) Ra-Shalom, and (3103) Eger - search for the YORP effect

    Full text link
    The spin state of small asteroids can change on a long timescale by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, the net torque that arises from anisotropically scattered sunlight and proper thermal radiation from an irregularly-shaped asteroid. The secular change in the rotation period caused by the YORP effect can be detected by analysis of asteroid photometric lightcurves. We analyzed photometric lightcurves of near-Earth asteroids (1865) Cerberus, (2100) Ra-Shalom, and (3103) Eger with the aim to detect possible deviations from the constant rotation caused by the YORP effect. We carried out new photometric observations of the three asteroids, combined the new lightcurves with archived data, and used the lightcurve inversion method to model the asteroid shape, pole direction, and rotation rate. The YORP effect was modeled as a linear change in the rotation rate in time d\omega /dt. Values of d\omega/ dt derived from observations were compared with the values predicted by theory. We derived physical models for all three asteroids. We had to model Eger as a nonconvex body because the convex model failed to fit the lightcurves observed at high phase angles. We probably detected the acceleration of the rotation rate of Eger d\omega / dt = (1.4 +/- 0.6) x 10^{-8} rad/d (3\sigma error), which corresponds to a decrease in the rotation period by 4.2 ms/yr. The photometry of Cerberus and Ra-Shalom was consistent with a constant-period model, and no secular change in the spin rate was detected. We could only constrain maximum values of |d\omega / dt| < 8 x 10^{-9} rad/d for Cerberus, and |d\omega / dt| < 3 x 10^{-8} rad/d for Ra-Shalom

    Motor Preparatory Activity in Posterior Parietal Cortex is Modulated by Subjective Absolute Value

    Get PDF
    For optimal response selection, the consequences associated with behavioral success or failure must be appraised. To determine how monetary consequences influence the neural representations of motor preparation, human brain activity was scanned with fMRI while subjects performed a complex spatial visuomotor task. At the beginning of each trial, reward context cues indicated the potential gain and loss imposed for correct or incorrect trial completion. FMRI-activity in canonical reward structures reflected the expected value related to the context. In contrast, motor preparatory activity in posterior parietal and premotor cortex peaked in high “absolute value” (high gain or loss) conditions: being highest for large gains in subjects who believed they performed well while being highest for large losses in those who believed they performed poorly. These results suggest that the neural activity preceding goal-directed actions incorporates the absolute value of that action, predicated upon subjective, rather than objective, estimates of one's performance

    Microstructural Abnormalities in Subcortical Reward Circuitry of Subjects with Major Depressive Disorder

    Get PDF
    Previous studies of major depressive disorder (MDD) have focused on abnormalities in the prefrontal cortex and medial temporal regions. There has been little investigation in MDD of midbrain and subcortical regions central to reward/aversion function, such as the ventral tegmental area/substantia nigra (VTA/SN), and medial forebrain bundle (MFB).We investigated the microstructural integrity of this circuitry using diffusion tensor imaging (DTI) in 22 MDD subjects and compared them with 22 matched healthy control subjects. Fractional anisotropy (FA) values were increased in the right VT and reduced in dorsolateral prefrontal white matter in MDD subjects. Follow-up analysis suggested two distinct subgroups of MDD patients, which exhibited non-overlapping abnormalities in reward/aversion circuitry. The MDD subgroup with abnormal FA values in VT exhibited significantly greater trait anxiety than the subgroup with normal FA values in VT, but the subgroups did not differ in levels of anhedonia, sadness, or overall depression severity.These findings suggest that MDD may be associated with abnormal microstructure in brain reward/aversion regions, and that there may be at least two subtypes of microstructural abnormalities which each impact core symptoms of depression

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    FUNCTIONAL MR OF BRAIN ACTIVITY AND PERFUSION IN PATIENTS WITH CHRONIC CORTICAL STROKE

    Get PDF
    PURPOSE: (1) To determine whether functional MR can reliably map functional deficits in patients with stroke in the primary visual cortex; (2) to determine whether functional MR can reliably map perfusion deficits; and (3) to determine whether functional MR can give any additional diagnostic information beyond conventional MR. METHODS: Seven patients who had had a stroke in their primary visual system were examined using two functional MR techniques: (1) dynamic susceptibility contrast imaging, and (2) cortical activation mapping during full-field visual stimulation. Maps of relative cerebral blood volume and activation were created and compared with visual field examinations and conventional T2-weighted images on a quadrant-by-quadrant basis in five of these patients. RESULTS: Visual field mapping matched with both T2-weighted conventional images and activation mapping of 16 of 18 quadrants. In two quadrants, the activation maps detected abnormalities that were present on the visual field examination but not present on the T2-weighted images nor on the relative cerebral blood volume maps, which may indicate abnormal function without frank infarction. In addition, the activation maps demonstrated decreased activation in extrastriate cortex and had normal T2 signal and relative cerebral blood volume but was adjacent to infarcted primary cortex, mapping in vivo how stroke in one location can affect the function of distant tissue. CONCLUSION: Functional MR techniques can accurately map functional and perfusion deficits and thereby provide additional clinically useful information. Additional studies will be needed to determine the prognostic utility of functional MR in stroke patients

    Overactivation of fear systems to neutral faces in schizophrenia

    Get PDF
    Background The amygdala plays a central role in detecting and responding to fear-related stimuli. A number of recent studies have reported decreased amygdala activation in schizophrenia to emotional stimuli (such as fearful faces) compared with matched neutral stimuli (such as neutral faces). We investigated whether the apparent decrease in amygdala activation in schizophrenia could actually derive from increased amygdala activation to the neutral comparator stimuli. Methods Nineteen patients with schizophrenia and 24 matched control participants viewed pictures of faces with either fearful or neutral facial expressions, and a baseline condition, during functional magnetic resonance imaging scanning. Results Patients with schizophrenia showed a relative decrease in amygdala activation to fearful faces compared with neutral faces. However, this difference resulted from an increase in amygdala activation to the neutral faces in patients with schizophrenia, not from a decreased response to the fearful faces. Conclusions Patients with schizophrenia show an increased response of the amygdala to neutral faces. This is sufficient to explain their apparent deficit in amygdala activation to fearful faces compared with neutral faces. The inappropriate activation of neural systems involved in fear to otherwise neutral stimuli may contribute to the development of psychotic symptoms in schizophrenia

    Recurrent, Robust and Scalable Patterns Underlie Human Approach and Avoidance

    Get PDF
    BACKGROUND. Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach), decrease (avoid), or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory. METHODOLOGY/PRINCIPAL FINDINGS. Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i) a preference trade-off counterbalancing approach and avoidance, (ii) a value function linking preference intensity to uncertainty about preference, and (iii) a saturation function linking preference intensity to its standard deviation, thereby setting limits to both. CONCLUSIONS/SIGNIFICANCE. These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference theory. Since variables in these patterns have been associated with reward circuitry structure and function, they may provide a method for quantitative phenotyping of normative and pathological function (e.g., psychiatric illness).National Institute on Drug Abuse (14118, 026002, 026104, DABK39-03-0098, DABK39-03-C-0098); The MGH Phenotype Genotype Project in Addiction and Mood Disorder from the Office of National Drug Control Policy - Counterdrug Technology Assessment Center; MGH Department of Radiology; the National Center for Research Resources (P41RR14075); National Institute of Neurological Disorders and Stroke (34189, 05236

    The tumbling rotational state of 1I/‘Oumuamua

    Get PDF
    The discovery of 1I/2017 U1 (1I/‘Oumuamua) has provided the first glimpse of a planetesimal born in another planetary system. This interloper exhibits a variable colour within a range that is broadly consistent with local small bodies, such as the P- and D-type asteroids, Jupiter Trojans and dynamically excited Kuiper belt objects. 1I/‘Oumuamua appears unusually elongated in shape, with an axial ratio exceeding 5:1. Rotation period estimates are inconsistent and varied, with reported values between 6.9 and 8.3 h. Here, we analyse all the available optical photometry data reported to date. No single rotation period can explain the exhibited brightness variations. Rather, 1I/‘Oumuamua appears to be in an excited rotational state undergoing non-principal axis rotation, or tumbling. A satisfactory solution has apparent lightcurve frequencies of 0.135 and 0.126 h−1 and implies a longest-to-shortest axis ratio of ≳5:1, although the available data are insufficient to uniquely constrain the true frequencies and shape. Assuming a body that responds to non-principal axis rotation in a similar manner to Solar System asteroids and comets, the timescale to damp 1I/‘Oumuamua’s tumbling is at least one billion years. 1I/‘Oumuamua was probably set tumbling within its parent planetary system and will remain tumbling well after it has left ours

    Effects of perceived cocaine availability on subjective and objective responses to the drug

    Get PDF
    <p>Abstract</p> <p>Rationale</p> <p>Several lines of evidence suggest that cocaine expectancy and craving are two related phenomena. The present study assessed this potential link by contrasting reactions to varying degrees of the drug's perceived availability.</p> <p>Method</p> <p>Non-treatment seeking individuals with cocaine dependence were administered an intravenous bolus of cocaine (0.2 mg/kg) under 100% ('unblinded'; N = 33) and 33% ('blinded'; N = 12) probability conditions for the delivery of drug. Subjective ratings of craving, high, rush and low along with heart rate and blood pressure measurements were collected at baseline and every minute for 20 minutes following the infusions.</p> <p>Results</p> <p>Compared to the 'blinded' subjects, their 'unblinded' counterparts had similar craving scores on a multidimensional assessment several hours before the infusion, but reported higher craving levels on a more proximal evaluation, immediately prior to the receipt of cocaine. Furthermore, the 'unblinded' subjects displayed a more rapid onset of high and rush cocaine responses along with significantly higher cocaine-induced heart rate elevations.</p> <p>Conclusion</p> <p>These results support the hypothesis that cocaine expectancy modulates subjective and objective responses to the drug. Provided the important public health policy implications of heavy cocaine use, health policy makers and clinicians alike may favor cocaine craving assessments performed in the settings with access to the drug rather than in more neutral environments as a more meaningful marker of disease staging and assignment to the proper level of care.</p
    corecore