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1I/‘Oumuamua is tumbling
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The discovery1 of 1I/2017 U1 (‘Oumuamua) has provided the first glimpse of a planetesimal

born in another planetary system. This interloper exhibits a variable colour, within a range

that is broadly consistent with local small bodies such as the P/D type asteroids, Jupiter Tro-

jans, and dynamically excited Kuiper Belt Objects2–6. 1I/‘Oumuamua appears unusually

elongated in shape, with an axial ratio exceeding 5:11, 4, 5, 7. Rotation period estimates are in-

consistent and varied, with reported values between 6.9 and 8.3 hours4–6, 8. Here we analyse

all reliable optical photometry reported to date. No single rotation period can explain the ex-

hibited brightness variations. Rather, 1I/‘Oumuamua appears to be in an excited rotational

state undergoing Non-Principal Axis (NPA) rotation, or tumbling. A satisfactory solution

has apparent lightcurve frequencies of 0.135 and 0.126 hr−1 and implies a longest-to-shortest
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axis ratio of & 5 : 1, though the available data are insufficient to uniquely constrain the true

frequencies and shape. Assuming a body that responds to NPA rotation in a similar manner

to Solar System asteroids and comets, the timescale to damp 1I/‘Oumuamua’s tumbling is

at least a billion years. 1I/‘Oumuamua was likely set tumbling within its parent planetary

system, and will remain tumbling well after it has left ours.

Models of uniform rotation about a single spin axis moderately match 1I/‘Oumuamua’s ob-

served brightness variations within a few nights1, 4–7. These models are inadequate for the 6-night

span of collated photometry we consider here (see Methods), with no single rotation period ade-

quately matching the full set of data (see Figure. 1). We find that models which consider linear

increases or decreases in the spin period fare no better, producing equally inadequate matches.

A tumbling model9 with NPA rotation and free precession does provide an adequate descrip-

tion of the photometry (see Figure 1). The relative sparseness of the data prevents determination

of a unique set of frequencies; possible frequencies include 0.31, 0.26, 0.23, 0.16, 0.14, 0.12, 0.10,

and 0.009 hr−1. We have discounted values which are clearly commensurate with the Earth’s ro-

tation, although there is the possibility that one may be real. It is clear that tumbling provides a

reasonable explanation for the peculiar brightness variations of 1I/‘Oumuamua, which cannot be

explained by simple single-axis rotation. Unfortunately, given the finite set of observations due to

the limited observability of the object, it is unlikely that a unique solution will ever be determined

for this object.

The most complete lightcurve previously published1 has an amplitude of ∼ 2.5 magnitudes,
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from which they suggested a minimum axial ratio of a/c ∼10:1. Observing at non-zero phase

angles α, however, can enhance the lightcurve amplitude by up to 0.018 magnitude/degree for

carbonaceous surfaces10, and∼ 3%/degree for S and similar type asteroids11, due to the combined

effects of optical scattering law, global shape and spin-pole inclination to the line of sight. As this

early lightcurve was observed at α ' 20◦, the true conservative lower limit to the axial ratio from

observations is a/c & 5. We caution, however, that the optical surface scattering properties of

interstellar objects are unknown at present.

NPA rotation of small asteroids with slow rotation periods is a well known phenomena9.

This tumbling can be brought about by collisions12, tidal torques in planetary close encounters13,

cometary activity14, or the YORP effect15. It is eventually damped by internal friction and stress-

strain forces removing the excess of rotational energy above that of the basic rotational state around

the body’s principal axis. The timescale to return to principal axis rotation depends on the body’s

internal rigidity and anelasticity, its initial rotation rate, density, size and shape16–18. As it is pos-

sible that 1I/‘Oumuamua is either an icy comet-like body or more similar to organic-rich asteroids

in the outer asteroid belt, we have estimated the timescale to return to principle axis rotation for

both possibilities (see Methods). We find that a rigid, organic-rich body with the observed ap-

parent elongation and size1 will take 3 × 1010 to 3 × 1012 years to stop tumbling. We note that

recent theories18, 19 do suggest that the timescales may be a factor of 7–9 shorter than the estimates

that use the classical formula16. For icy bodies, the damping timescale is an order of magnitude

lower. It is unlikely, however, to be this short for 1I/‘Oumuamua, which must possess some rigid-

ity to support its highly elongated shape. A large fraction of Solar System asteroids smaller than
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∼ 200 meters are tumblers, even among the very fast rotators that have tensile strength, e.g. 2000

WL1079 and 2008 TC320. Their tumbling suggests that they have a higher rigidity than larger and

more weakly structured asteroids, which results in long damping timescales. 1I/‘Oumuamua may

have a similarly prolonged damping timescale, which could be much longer than the age of the

universe.

What induced the current tumbling of 1I/‘Oumuamua? As the YORP effect scales with

incident stellar flux, and cometary activity only occurs within close proximity of a star, both should

be negligible in interstellar space. The space density of interstellar objects similar in size or larger

than 1I/‘Oumuamua is estimated as n ∼ 0.1 au−3 and they should have a typical local standard

of rest encounter velocity of v ' 25 km/s21. The collisional lifetime for an interstellar object of

effective radius R is ∼ (nR2v)−1 ∼ 1019 years. With a lack of other mechanisms available, it is

clear that the tumbling of 1I/‘Oumuamua probably commenced in its home planetary system.

Colour variations have been detected for 1I/‘Oumuamua, with reported optical spectral slopes

(see Methods) spanning 0 . S ′ . 25%/100 nm within the six-day span available. Large colour

variations cannot explain the unusual lightcurve behaviour of our multi-band dataset, as even when

considering only observations made in r’, a single rotation period cannot be found. The observed

colour variations appear to be correlated with the rotation of 1I/‘Oumuamua (see Figure 2). The

colour measurements imply that the body is largely a nearly-neutral reflector with spectral slope

S ′ ∼ 5%/100 nm, and has a large red region that becomes visible after the two brightest phases in

the first two nights of the photometry sequence. This colour variation is of a magnitude similar to
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the colour variations seen on some Kuiper Belt Objects22, 23. It should be noted that the observed

colours are progressively more neutral with date observed. It is tempting to attribute this to a

trend of the surface of 1I/‘Oumuamua progressively evolving to a more neutral colour with time,

as is observed amongst the Jupiter Family Comets and Centaurs24. This however, would require

1I/‘Oumuamua’s transition from red to neutral to occur entirely within the six-day duration of the

observations, 42–48 days after perihelion, in an unlikely serendipity of timing.
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Methods

Optical photometry. This was compiled from Bannister et al., Jewitt et al., Knight et al., and

Meech et al.1, 4, 5, 7 Where available, observations were corrected to the r’ filter in the Sloan Digital

Sky Survey (SDSS) photometric system 25, using colours reported in those references, or using the

temporally closest (g-r) colours1, 4, assuming linear reflectance spectra through the optical range,
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which is consistent with reported spectra1–3. Spectral slopes (percent increase in reflectivity per

100 nm increase in wavelength normalized to 550 nm) were estimated from reported colours1, 4, 5

and spectra2, 3 assuming a linear spectrum through the optical range.

Lightcurve modelling. Simple rotation periods were searched for using phase dispersion

minimization. The tumbling lightcurve was modelled following the technique of Pravec et al.

(2005)9: a 2-dimensional 2nd order Fourier series was used to model the observed brightness

variations, and satisfactory solutions were searched for in the 2-dimensional frequency space. A

number of possible combinations of frequencies were found to fit the lightcurve data; one of those

providing a plausible fit is presented in Fig. 1. Note, however, that due to the limited coverage of

the lightcurve with the available data (missing observations from the longitudes of Asia/Australia

in particular) the solution is not “anchored” at uncovered times between the observational runs,

allowing the fitted model to possibly under- or over-estimate the brightness variation at those times.

Without additional data breaking the commensurability of the observations with Earth’s rotation,

this problem cannot be solved. With the limited data, no Fourier series of order higher than 2 could

be used. While the 2nd-order Fourier series describes the lightcurve data well at most rotational

phases, some lightcurve minima are not accurately modelled, with the fit either underestimating

or overestimating the depth. Additional data might enable use of a 3rd order Fourier series which

would improve the model fit to the lightcurve minima.

Damping Timescales. To estimate the damping timescales τD, we used the formulation used

previously in the study of small Solar system bodies16:

7



τD '
µQ

ρK2
3R

2ω3

where µ is the rigidity of the object, Q is the anelasticity or damping constant, ρ is the bulk density

and ω is the angular velocity of rotation. For 1I/‘Oumuamua we take ω = 7.4 hours from our

analysis. K3 is a scaling coefficient that depends on the oblateness of the body p = (a − b)/a

where a and b are the semi-major and semi-minor axes of the body; K3 ' 0.1p2. The lightcurve of

Meech et al. along with an assumed geometric albedo of 0.04 implies projected radii 200 × 20 m

ignoring amplitude-phase angle effects (see main text), hence we use this to estimate a maximum

obliquity of p ' 0.9 and K3 ' 0.09.

For an icy (or initially icy) comet-like body we assume ρ ' 1000 kg m−3. The internal

rigidity is unknown, but we assume that µ ' 4 × 109 N m−2 as assumed for previously assumed

for small bodies with weak strength26. The mean radius is given by R '
√
ab ' 60 m. Then a

range of viable values of 100 ≤ Q ≤ 1000 in turn implies 3×109 ≤ τD ≤ 3×1010 years. However

there is the possibility that 1I/‘Oumuamua is instead a rocky object similar to C-type asteroids as

found predominantly in the outer main-belt. In this case we can assume ρ ' 2000 kg m−3 and

a rigidity a factor of 10 higher. At the same time the geometric albedo could be high at ' 0.08,

implying a corresponding reduction in R. This then predicts 3× 1010 ≤ τD ≤ 3× 1011 years.
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Note to editor: a csv format table of photometry corrected for geometry, light travel time,

and colour will accompany the final submission. Also note the caption describing the table will be

stated in a supplemental pdf.
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Figure 1 The geometry-reduced and colour-corrected r’-band photometry of 1I/‘Oumuamua

cannot be well described by a model of simple rotation; the dashed line depicts the best

nominal period of 6.831 hours. The tumbling model lightcurve (solid line), however, is an

adequate representation (see Methods for comments on the quality of the model fit to the

lightcurve minima). Data sources1,4,5,7 are indicated by common symbols and the first

letter of their lead-author name.

Figure 2 Photometry of 1I/‘Oumuamua from night 1 (MJD 58051; red) phased to night

2 (MJD 58052; black). Spectral slopes reported over this time argue for a body that is

mainly a neutral reflector, with a red region.
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