139 research outputs found

    Extracting chemical energy by growing disorder: Efficiency at maximum power

    Get PDF
    We consider the efficiency of chemical energy extraction from the environment by the growth of a copolymer made of two constituent units in the entropy-driven regime. We show that the thermodynamic nonlinearity associated with the information processing aspect is responsible for a branching of the system properties such as power, speed of growth, entropy production, and efficiency, with varying affinity. The standard linear thermodynamics argument which predicts an efficiency of 1/2 at maximum power is inappropriate because the regime of maximum power is located either outside of the linear regime or on a separate bifurcated branch, and because the usual thermodynamic force is not the natural variable for this optimization.Comment: 6 pages, 4 figure

    Solitons in the Yakushevich model of DNA beyond the contact approximation

    Full text link
    The Yakushevich model of DNA torsion dynamics supports soliton solutions, which are supposed to be of special interest for DNA transcription. In the discussion of the model, one usually adopts the approximation ℓ0→0\ell_0 \to 0, where ℓ0\ell_0 is a parameter related to the equilibrium distance between bases in a Watson-Crick pair. Here we analyze the Yakushevich model without ℓ0→0\ell_0 \to 0. The model still supports soliton solutions indexed by two winding numbers (n,m)(n,m); we discuss in detail the fundamental solitons, corresponding to winding numbers (1,0) and (0,1) respectively

    Casimir-Polder interaction between an atom and a small magnetodielectric sphere

    Full text link
    On the basis of macroscopic quantum electrodynamics and point-scattering techniques, we derive a closed expression for the Casimir-Polder force between a ground-state atom and a small magnetodielectric sphere in an arbitrary environment. In order to allow for the presence of both bodies and media, local-field corrections are taken into account. Our results are compared with the known van der Waals force between two ground-state atoms. To continuously interpolate between the two extreme cases of a single atom and a macroscopic sphere, we also derive the force between an atom and a sphere of variable radius that is embedded in an Onsager local-field cavity. Numerical examples illustrate the theory.Comment: 9 pages, 4 figures, minor addition

    Volumetry improves the assessment of the vestibular aqueduct size in inner ear malformation

    Full text link
    Objectives: Enlarged vestibular aqueduct (EVA) is a common finding associated with inner ear malformations (IEM). However, uniform radiologic definitions for EVA are missing and various 2D-measurement methods to define EVA have been reported. This study evaluates VA volume in different types of IEM and compares 3D-reconstructed VA volume to 2D-measurements. Methods: A total of 98 high-resolution CT (HRCT) data sets from temporal bones were analyzed (56 with IEM; [cochlear hypoplasia (CH; n = 18), incomplete partition type I (IPI; n = 12) and type II (IPII; n = 11) and EVA (n = 15)]; 42 controls). VA diameter was measured in axial images. VA volume was analyzed by software-based, semi-automatic segmentation and 3D-reconstruction. Differences in VA volume between the groups and associations between VA volume and VA diameter were assessed. Inter-rater-reliability (IRR) was assessed using the intra-class-correlation-coefficient (ICC). Results: Larger VA volumes were found in IEM compared to controls. Significant differences in VA volume between patients with EVA and controls (p < 0.001) as well as between IPII and controls (p < 0.001) were found. VA diameter at the midpoint (VA midpoint) and at the operculum (VA operculum) correlated to VA volume in IPI (VA midpoint: r = 0.78, VA operculum: r = 0.91), in CH (VA midpoint: r = 0.59, VA operculum: r = 0.61), in EVA (VA midpoint: r = 0.55, VA operculum: r = 0.66) and in controls (VA midpoint: r = 0.36, VA operculum: r = 0.42). The highest IRR was found for VA volume (ICC = 0.90). Conclusions: The VA diameter may be an insufficient estimate of VA volume, since (1) measurement of VA diameter does not reliably correlate with VA volume and (2) VA diameter shows a lower IRR than VA volume. 3D-reconstruction and VA volumetry may add information in diagnosing EVA in cases with or without additional IEM. Keywords: 3D segmentation; Cochlear malformation; Diagnosis; Inner ear malformation; Volum

    Effect of slight crosslinking on the mechanical relaxation behavior of poly(2-ethoxyethyl methacrylate) chains

    Full text link
    The synthesis, thermal and mechanical characterizations of uncrosslinked and lightly crosslinked poly(2-ethoxyethyl methacrylate) are reported. The uncrosslinked poly(2-ethoxyethyl methacrylate) exhibits in the glassy state two relaxations called in increasing order of temperature, the gamma and beta processes respectively. These are followed by a prominent glass rubber or alpha relaxation. By decreasing the chains mobility by a small amount of crosslinking, the beta relaxation disappears and the peak maximum associated with the alpha relaxation is shifted from 268 K to 278 K, at 1 Hz. An investigation of the storage relaxation modulus of the crosslinked polymer indicates two inflexion points that presumably are related to segmental motions of dangling chains of the crosslinked networks and to cooperative motions of the chains between crosslinking points. Nanodomains formed by side-groups flanked by the backbone give rise to a Maxwell Wagner Sillars relaxation in the dielectric spectra that have no incidence in the mechanical relaxation spectra.We thank Dr. J. Guzman (Madrid) for providing us with the CEOEMA sample. This work was financially supported by the DGCYT and CAM through the Grant MAT2008-06725-C03 and MAT2012-33483. In memoriam of Professor Emeritus Evaristo Riande in recognition of his contribution to Polymer Science.Carsí Rosique, M.; Sanchis Sánchez, MJ.; Díaz Calleja, R.; Riande, E.; Nugent, MJD. (2013). Effect of slight crosslinking on the mechanical relaxation behavior of poly(2-ethoxyethyl methacrylate) chains. European Polymer Journal. 49(6):1495-1502. doi:10.1016/j.eurpolymj.2012.12.012S1495150249

    Mutagenesis-Mediated Virus Extinction: Virus-Dependent Effect of Viral Load on Sensitivity to Lethal Defection

    Get PDF
    Background: Lethal mutagenesis is a transition towards virus extinction mediated by enhanced mutation rates during viral genome replication, and it is currently under investigation as a potential new antiviral strategy. Viral load and virus fitness are known to influence virus extinction. Here we examine the effect or the multiplicity of infection (MOI) on progeny production of several RNA viruses under enhanced mutagenesis. Results: The effect of the mutagenic base analogue 5-fluorouracil (FU) on the replication of the arenavirus lymphocytic choriomeningitis virus (LCMV) can result either in inhibition of progeny production and virus extinction in infections carried out at low multiplicity of infection (MOI), or in a moderate titer decrease without extinction at high MOI. The effect of the MOI is similar for LCMV and vesicular stomatitis virus (VSV), but minimal or absent for the picornaviruses foot-and-mouth disease virus (FMDV) and encephalomyocarditis virus (EMCV). The increase in mutation frequency and Shannon entropy (mutant spectrum complexity) as a result of virus passage in the presence of FU was more accentuated at low MOI for LCMV and VSV, and at high MOI for FMDV and EMCV. We present an extension of the lethal defection model that agrees with the experimental results. Conclusions: (i) Low infecting load favoured the extinction of negative strand viruses, LCMV or VSV, with an increase of mutant spectrum complexity. (ii) This behaviour is not observed in RNA positive strand viruses, FMDV or EMCV. (iii) The accumulation of defector genomes may underlie the MOI-dependent behaviour. (iv) LCMV coinfections are allowed but superinfection is strongly restricted in BHK-21 cells. (v) The dissimilar effects of the MOI on the efficiency of mutagenic-based extinction of different RNA viruses can have implications for the design of antiviral protocols based on lethal mutagenesis, presently under development. © 2012 Moreno et al.Centro de Biología Molecular Severo Ochoa; Ministerio de Ciencia e Innovación (MICINN); Fundación Ramón ArecesPeer Reviewe

    Auswirkungen der SARS-CoV‑2-Pandemie auf die universitäre Hals-Nasen-Ohren-Heilkunde im Bereich der Forschung, Lehre und Weiterbildung

    Get PDF
    Hintergrund Ab Frühjahr 2020 kam es zur weltweiten Verbreitung von SARS-CoV‑2 mit der heute als erste Welle der Pandemie bezeichneten Phase ab März 2020. Diese resultierte an vielen Kliniken in Umstrukturierungen und Ressourcenverschiebungen. Ziel unserer Arbeit war die Erfassung der Auswirkungen der Pandemie auf die universitäre Hals-Nasen-Ohren(HNO)-Heilkunde für die Forschung, Lehre und Weiterbildung. Material und Methoden Die Direktorinnen und Direktoren der 39 Universitäts-HNO-Kliniken in Deutschland wurden mithilfe einer strukturierten Online-Befragung zu den Auswirkungen der Pandemie im Zeitraum von März bis April 2020 auf die Forschung, Lehre und die Weiterbildung befragt. Ergebnisse Alle 39 Direktorinnen und Direktoren beteiligten sich an der Umfrage. Hiervon gaben 74,4 % (29/39) an, dass es zu einer Verschlechterung ihrer Forschungstätigkeit infolge der Pandemie gekommen sei. Von 61,5 % (24/39) wurde berichtet, dass pandemiebezogene Forschungsaspekte aufgegriffen wurden. Von allen Kliniken wurde eine Einschränkung der Präsenzlehre berichtet und 97,5 % (38/39) führten neue digitale Lehrformate ein. Im Beobachtungszeitraum sahen 74,4 % der Klinikdirektoren die Weiterbildung der Assistenten nicht gefährdet. Schlussfolgerung Die Ergebnisse geben einen Einblick in die heterogenen Auswirkungen der Pandemie. Die kurzfristige Bearbeitung pandemiebezogener Forschungsthemen und die Einführung innovativer digitaler Konzepte für die studentische Lehre belegt eindrücklich das große innovative Potenzial und die schnelle Reaktionsfähigkeit der HNO-Universitätskliniken, um auch während der Pandemie ihre Aufgaben in der Forschung, Lehre und Weiterbildung bestmöglich zu erfüllen

    ELECTRONIC-CONFORMATIONAL INTERACTIONS IN PROTEINS

    No full text
    ABSTRACT The functionality of biopolymers and of the supermolecular structures in biology depends strongly on the interactions between electronic excitations and the shifts of the electronic density with the conformational changes in these systems. The study of the electronic-conformational interactions can help to form the physical theory of enzymatic activity and of the other biomolecular phenomena. The concept of the conformon can be introduced for the theoretical description of the electronic-conformational interactions, describing a kind of the quasi-particle containing the shift of the electronic density and the conformational changes. The direct experimental investigations of the electronic-conformational interactions were performed with the systems apo-aspartate-amino transferase with a series of different coenzymes
    • …
    corecore