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Abstract. We consider the efficiency of chemical energy extraction from the
environment by the growth of a copolymer made of two constituent units in the
entropy-driven regime. We show that the thermodynamic nonlinearity associated
with the information processing aspect is responsible for a branching of the system
properties such as power, speed of growth, entropy production, and efficiency,
with varying affinity. The standard linear thermodynamics argument which
predicts an efficiency of 1/2 at maximum power is inappropriate because the
regime of maximum power is located either outside of the linear regime or on a
separate bifurcated branch, and because the usual thermodynamic force is not
the natural variable for this optimization.

Keywords: kinetic growth processes (theory), stochastic particle dynamics
(theory)

c©2010 IOP Publishing Ltd and SISSA 1742-5468/10/P01008+11$30.00

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/18438503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mesposit@ulb.ac.be
mailto:klindenberg@ucsd.edu
mailto:christian.vandenbroeck@uhasselt.be
http://stacks.iop.org/JSTAT/2010/P01008
http://dx.doi.org/10.1088/1742-5468/2010/01/P01008


J.S
tat.M

ech.
(2010)

P
01008

Extracting chemical energy by growing disorder: efficiency at maximum power

Contents

1. Introduction 2

2. Thermodynamics 3

3. Kinetics 5

4. Efficiency at maximum power 6

5. Conclusions 11

Acknowledgments 11

References 11

1. Introduction

Carnot efficiency is one of the cornerstones of thermodynamics since it leads to the
definition of entropy and the second law of thermodynamics. It expresses a fundamental
limitation on how much work can be extracted from a heat flow. A less studied but
arguably more relevant question for many isothermal chemical and biological processes is
how much chemical energy a system can extract from its environment by increasing the
system’s configurational entropy. Thermodynamics does, in fact, also prescribe a limit,
even though at first sight it appears to be almost trivial: the energy extracted by such an
isothermal transfer can be carried out with 100% efficiency. However, there is a crucial
additional condition, namely, that this efficiency can only be reached—just as in the case
of Carnot efficiency—by a reversible, infinitely slow process. Hence 100% efficiency is
achieved for a process with zero power output. The question of efficiencies at finite power
should thus be addressed.

In the context of thermal machines, a straightforward analysis based on linear
irreversible thermodynamics teaches us that, as one moves away from the reversible
regime, the power goes through a unique maximum, and that the efficiency at this
maximum is, at most, 50% [1, 2]. The same argument can easily be extended to
the transformation between different forms of chemical energy. However, the above
prediction may not apply for several reasons. First, the point of maximum power does
not necessarily lie in the linear regime. Second, thermodynamic nonlinear effects can
give rise to bifurcated branches. Finally, the above-mentioned efficiency is attained
upon maximization with respect to the thermodynamic force associated with the power
generating flux. While this is a natural set-up in many problems, it may not always
correspond to the relevant scenario.

In this paper, we investigate the efficiency of a chemical entropy-driven process of
capital importance in biophysics, namely, copolymer synthesis [3, 4, 6, 5]; see also [7, 8].
As exemplified by the copolymer DNA, guardian of genetic information, such processes
are essential for biological information processing. We will show that the above-mentioned
complications are present in this generic model. In particular, the thermodynamic
nonlinearity associated with the information processing aspect is responsible for a
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branching of the system properties such as power, speed of growth, efficiency and entropy
production, as one varies the affinity. Furthermore, the regime of maximum power is
located either outside of the linear regime or on the separate bifurcated branch. Finally,
it turns out that the thermodynamic force is not a natural control variable in the
present model. While our (exact) analysis is carried out for the simplest possible model,
namely, copolymer synthesis with two constituent building blocks, our findings suggest
that chemical information processing usually operates in the far-from-equilibrium regime,
with unique features due to the entropic contribution.

In section 2 we present the basic thermodynamic formulae that define our system.
In section 3 we present the detailed kinetic description of our model, whose results are
discussed in detail in section 4. In particular, it is here that we exhibit the correct and
unexpected results for the efficiency at maximum power, results that arise entirely from
the nonlinear nature of the problem. A brief recapitulation is presented in section 5.

2. Thermodynamics

We begin with some well-known relations for isothermal systems. Consider a spontaneous
chemical process involving particles of different types labeled with j, with corresponding
particle number Nj and chemical potential μj. The system is in thermal and mechanical
equilibrium at temperature T and pressure P . The total Gibbs free energy

G = U + PV − TS = H − TS =
∑

i

μiNi (1)

evolves toward a minimum value, so dG ≤ 0. Alternatively, to characterize the evolution
of the isothermal system we write

dS = diS + deS, TdiS = −
∑

j

μjdiNj , TdeS = dH −
∑

j

μjdeNj . (2)

We have separated the total entropy change into two contributions. The first one, diS,
is the always-positive part of the entropy change, called the internal entropy production.
The other is the contribution to the entropy change due to exchange processes between
the system and its environment, and can be positive or negative. Associated with these
contributions, we have written the change in the number of particles of type j as

dNj = deNj + diNj , (3)

where the first contribution is due to exchange of particles with the environment, and the
second is the internal change caused by the chemical reaction. We take the system to be
closed, i.e., it exchanges only energy and not particles with the environment, so deN = 0.
These definitions lead to consistency between the statements that the system evolves
toward a minimum in the Gibbs free energy and that the internal entropy production of
this chemical system has to be positive [9], that is,

diS = dS − dH

T
= −

∑
j μjdNj

T
= −dG

T
≥ 0. (4)

Obviously, for a reversible transformation with zero internal entropy production, diS = 0.
We now turn to the simplest scenario of copolymer synthesis. The system consists of

a bulk phase containing two types of monomer units, 1 and 2, which can attach or detach
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at the endpoint of a single linear copolymer. The number of monomers in the bulk is
assumed very large so that their chemical potentials can be assumed to remain constant
during the copolymer growth. We identify the four states 1f, 1c, 2f and 2c. Here the jf
represent free bulk monomers and the jc represent monomers attached to the copolymer.
Since the number of each type of monomer is conserved, one has dN1f = −dN1c and
dN2f = −dN2c. The entropy production (4) can thus be written in the familiar bilinear
form

Ṡi ≡ diS

dt
=

(μ1f − μ1c)

T

dN1c

dt
+

(μ2f − μ2c)

T

dN2c

dt
= A1J1 + A2J2, (5)

with the affinities Aj =
(μjf−μjc)

T
and the conjugate fluxes Jj = dNjc/dt.

In view of the relation diS = dS − dH/T , we rewrite the entropy production as

Ṡi =

(
s1 − h1

T

)
J1 +

(
s2 − h2

T

)
J2 + D(J1 + J2). (6)

Here hj is the change of enthalpy per monomer upon transfer from the bulk to the
copolymer. The crucial point, which has been discussed in detail in the literature [3, 4, 6, 5],
is realizing that the average change of entropy upon transfer of a monomer from the bulk
to the copolymer contains two contributions. One is the monomer entropy, sj, due to
the change in the monomer degrees of freedom and in the monomer internal structure
between the free monomer in solution and the monomer inside the copolymer. The other
is the configurational entropy denoted by D, due to the change in the information stored
in the polymer sequence that occurs when a monomer is added to the copolymer. It is
given by the Shannon entropy (Boltzmann constant is taken as unity)

D = − lim
l→∞

1

l

∑

ω

Pω ln Pω, (7)

where l is the copolymer length in monomer units and Pω is the probability of a copolymer
with monomer sequence ω. In the absence of correlations, the Shannon entropy is
expressed solely in terms of the monomer abundance probabilities p1 = p and p2 = 1− p,

D = −p ln p − (1 − p) ln(1 − p). (8)

For simplicity, we further assume that monomer entropy and enthalpy changes upon
transfer of a monomer from the bulk to the copolymer and vice versa have the same value
for the two monomers, that is,

ε ≡ h1

T
− s1 =

h2

T
− s2. (9)

We henceforth call Tε the monomer ‘free enthalpy’. Introducing the net speed of growth
of the copolymer, v = J1 + J2, the entropy production can finally be written as

Ṡi = Av ≥ 0, (10)

where the total affinity is given by

A = D − ε. (11)

The expression (10) for the entropy production in the steady state regime of the growing
copolymer has been derived in [3]–[6]. It is interesting to realize that the affinity is not
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an obvious control parameter due to its dependence on D which is in turn a nontrivial
function of ε. Only ε can be easily controlled externally by changing the concentration of
the monomers in solution.

The power at which Tε, the free enthalpy, is extracted from the surroundings by the
copolymer growth is given by

P = Tεv = T (D − A)v. (12)

The efficiency η of the process is defined as the ratio of this power over the cost TDv of
the entropy growth per unit time,

η =
Tεv

TDv
=

D − A

D
. (13)

In the reversible limit with A, v → 0, the efficiency of the process becomes optimal,
η = 1, but the extracted power goes to zero. The standard prediction from linear
thermodynamics that arrives at an efficiency of 50% at maximum power is obtained upon
expanding the velocity in terms of the affinity, v = LA, with L the linear response
coefficient. Within this approximation the power becomes P ≈ TL(D − A)A. Note that
this power attains its maximum for A = D/2 with the corresponding efficiency η = 1/2,
if we assume that D is kept constant. However, below we will investigate the more
natural optimization with respect of ε, since this is the natural and easily controllable
variable related to the free enthalpy flux. Whatever control variable is used, we will see in
section 4 that the true maximum is beyond the reach of this linear expansion (and even
of a nonlinear continuation of this expansion).

3. Kinetics

We now turn to the detailed kinetic description of the copolymerization process, which
will allow us to identify the expressions for v and p in the context of a full nonlinear
analysis. Let us name as k+j and k−j the rates of insertion and removal, respectively, of
monomer j = 1, 2. Because the free enthalpy of the monomers has been assumed to be
the same, the ratios of the reaction rates are given by

k+1

k−1
=

k+2

k−2
= e−ε. (14)

The fraction p of monomers of type 1 present in the copolymer in the regime of steady
growth can be determined by the following self-consistency argument. The ratio p/(1−p)
of the number of 1 versus 2 monomers in an ensemble of copolymers has to be equal to
the ratio of their net rates of attachment. For monomer 1, this net rate is the pure rate of
attachment, k+1, minus the rate of detachment, which is −k−1p. The factor p arises from
the fact that detachment is only possible when the monomer at the tip of the copolymer is
of type 1, and this occurs with probability p. The net rate of attachment for 2 is similarly
given by k+2 − k−2(1 − p). We thus conclude that

k+1 − k−1p

k+2 − k−2(1 − p)
=

p

1 − p
. (15)
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The solution of the resulting quadratic equation for p reads

p =
a − √

a2 − 4(k−1 − k−2)k+1

2(k−1 − k−2)
, (16)

where a = k+1 + k+2 + k−1 − k−2. By a similar argument we find that the speed of growth
of the copolymer, given by the rate of attachment k+1 +k+2 minus the rate of detachment
k−1p + k−2(1 − p), is given by

v = k+1 − k−1p + k+2 − k−2(1 − p). (17)

We note from equations (8), (10), (11), (16) and (17) that equilibrium, v = 0 and
A = 0, occurs at ε = ln 2 with p = 1/2 and D = ln 2. For smaller (larger) values of ε,
A > 0 (A < 0) and the copolymer is synthesized (degraded), i.e., v > 0 (v < 0). Of specific
interest to us is the surprising regime of entropy-driven growth, A > 0 and v > 0, but
with ε > 0 [3, 4, 6, 5]. Under the simplifications assumed in our model, this occurs when
0 ≤ ε ≤ ln 2. Monomers are pumped uphill against the free enthalpy barrier ε ≥ 0 under
the influence of the entropic contribution D to the affinity. The power P (enthalpy per
unit time) extracted from the copolymerization dynamics is positive in this entropy-driven
regime (cf equation (12)), with the corresponding efficiency given in equation (13).

4. Efficiency at maximum power

To study the main question of interest, namely, the regime of maximum power and
its corresponding efficiency, we choose convenient variables. We note that the model
is described using four kinetic constants, but the latter are not independent since they
obey the relation equation (14). Furthermore, one of them can be set equal to 1 by
an appropriate choice of the time unit, e.g., k+1 = 1. As the remaining two degrees of
freedom, we choose ε and k+2. We then have explicit functional expressions for all the
other quantities k−1 = eε, k−2 = eεk+2, p and v (cf equations (16) and (17)), and hence
also D, A, P, Ṡi, and η; see equations (11)–(13), (8) and (10). Other relations between, for
example, P and A, can then be obtained by parametric elimination. The quantities P, v,
η, A, and Ṡi can easily be calculated numerically. The results are summarized in figures 1–
4. We next turn to a discussion of these figures, supplemented with corresponding analytic
calculations.

The information contained in figure 1 is detailed in the caption. The most striking
feature in this figure is the existence of two different branches for the power and velocity
in terms of the affinity. For simplicity and without loss of generality, temperature is taken
to unity (T = 1) in what follows. The transition between the two branches occurs when

d(P, v)

dA
=

d(P, v)

dε

(dA

dε

)−1

(18)

diverges. (P, v) indicates P or v. Since ∂(P, v)/∂ε is an analytic function of ε, the new
branch appears when ∂A/∂ε touches zero. As long as the latter quantity remains positive,
which is the case for k+2 smaller than a certain critical value (cf figure 3), the power and
velocity can be seen as a true function of A. Branching takes place at the critical point,
characterized by ∂A/∂ε = ∂2A/∂ε2 = 0, resulting in k+2 ≈ 84.33 and ε = 0.088; see
again figure 3. For values of k+2 larger than this critical value, power is no longer a
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Figure 1. The full thick curves represent the parametric dependence on 0 ≤ ε ≤
ln 2 of the power P, the copolymerization speed v, and the efficiency η on the
ordinate and the affinity A on the abscissa. The point ε = ln 2 is located at the
origin of the axes for P and v and at η = 1 and A = 0 for η. The small dots along
the curves are separated by Δε = (ln 2)/14 to indicate how fast ε changes along
the curves. Different thick curves correspond to different choices of k+2, with
k+1 ≤ k+2 ≤ ∞. Without loss of generality we set k+1 = 1 (time rescaling). The
thin dashed curves intersect the thick curves where the value of ε corresponds to
maximum power with respect to ε. The curves in the inset in the P plot and in
the upper inset of the v plot correspond to k+2 = 65, 85, 105, 121, 160, and 200.
The dashed curves in the lower inset of this plot represent the linear response
predictions v = LA for k+2 = 1, 2, 11.
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Figure 2. Efficiency η and power P corresponding to the maximum power denoted
simply by ε in the figure for different values of k+2. We have set k+1 = 1.

Figure 3. Derivative of the affinity with respect to ε and affinity (in the inset) as
a function of ε. The different curves correspond to k+2 = 0, 11, 65, 85, 105, 121,
160, 200, 1001, and ∞ and k+1 = 1.

proper function of A, as two branches appear, with two values of (P, v) for a given value
of A. While along the linear branch and its continuation the affinity decreases with ε, the
affinity increases with ε on the new lower branch; cf the inset in figure 3. This remarkable
result implies that we can approach low values of affinities via a nonlinear branch which is
distinct from the branch predicted by linear response theory and its continuation. We note
that the entropy production itself becomes a bi-valued function in terms of the affinity,
as can be seen in figure 4. Naively, one would expect entropy production and affinity to
provide consistent measures for the distance from equilibrium. This is clearly not the case
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Figure 4. Same type of plot as figure 1 but for entropy production.

in the present model, where the entropy production is a decreasing function of the affinity
on the upper nonlinear branch. In particular, for very large values of k+2 one finds that
the entropy production becomes very large while the affinity goes to zero. We conclude
that the affinity is not a reliable measure for the distance from equilibrium.

To explore the region close to equilibrium and, in particular, the linear response
regime, we write ε = ln 2 − δε and expand in powers of δε. From equation (8) with
equations (16) and (14) we find

D = ln 2 − α δε2 + O(δε3), (19)

where

α =
(k+1 − k+2)

2

2(k+1 + k+2)2
. (20)

For the affinity, we find from equation (11) that

A = δε − αδε2 + O(δε3). (21)

The efficiency thus becomes

η = 1 − δε

ln 2
+

α

ln 2
δε2 + O(δε3) = 1 − A

ln 2
+ O(δε3). (22)

This linear dependence of the efficiency on the affinity close to equilibrium is clearly
identified in the upper left region of the third affinity plot in figure 1, while the
corresponding behavior of the affinity in terms of ε (cf equation (21)) is observed in
the lower left region of the inset of figure 3. In this regime close to equilibrium we find
the standard linear response relations

v = LA + O(δε2) (23)

P = ln 2 LA + O(δε2), (24)
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with the Onsager coefficient given by L = 4k+1k+2/(k+1 + k+2); cf the lower left regions
of the power and speed plots in figure 1. Note also that the Onsager coefficient becomes
independent of k+2 in the limit k+1 � k+2, where L = 4k+1.

We have seen that linear response predicts an efficiency at maximum power of 50%.
However, as announced earlier, this result is not correct. This is seen in figure 1 or in 2,
where the affinity is clearly above the value 1/2 in the regime ‘closest’ to equilibrium. The
explanation is that maximum power occurs beyond the reach of linear response theory, as
can clearly be seen in the lower inset of the v plot in figure 1, where the linear response
curves (dashed lines) become inaccurate at maximum power. Furthermore, we note that
the point of maximum power moves onto the nonlinear branch as k+2 grows, now occurring
at decreasing values of A. So, even though we are approaching a regime of low power
output with decreasing affinity, we do so via the nonlinear branch, where the prediction
of linear response theory utterly fails. The main conclusion is that, while there is indeed
a regime of linear response, it is unable to describe the region of maximum power, which
always occurs outside the regime of validity of the linear law.

To complete our analysis, we explore in detail the limiting cases k+2 → k+1 and
k+2/k+1 → ∞. For transparency, we explicitly retain k+1 instead of setting it equal to
unity. In the limit where k+2 → k+1, we find that

p = 1
2
, v = k+1(2 − eε), D = ln 2. (25)

This leads to an efficiency η = ε/ ln 2 = 1 − A/ ln 2, as observed in figure 1. In this limit,
the value of ε leading to maximum power is obtained as the solution of the transcendental
equation 2e−ε − ε = 1, namely, ε ≈ 0.375. At maximum power we thus get

P ≈ 0.204k+1 and η ≈ 0.541, (26)

as seen in figures 1 and 2. As an immediate consequence, we also find v ≈ 0.545k+1 and
A ≈ 0.318, as observed in figure 1.

In the limit k+2 → ∞, where

p = 1 − e−ε, v = k+1e
ε (2e−ε − 1)

(e−ε − 1)
, D = e−εε − (1 − e−ε) ln(1 − e−ε), (27)

the efficiency reads η = −ε/[e−εε+(1− e−ε) ln(1− e−ε)]. The numerical results of figure 1
suggest that the maximum power in this limit occurs for ε very close to zero. We therefore
expand the velocity around ε = 0 and find v = −√

k+1k+2 + (k+1 + k+2)ε/2 + O(ε2).

Using equation (12), we find that maximum power occurs at ε = −√
k+1k+2/(k+1 + k+2),

resulting in P =
√

k+1k+2/(k+1 + k+2). For k+2 → ∞ the latter becomes

P = 1, (28)

as observed in figures 1 and 2. Similarly, by expanding η to first order around ε = 0 and
using the value we found for ε at maximum power, we find that

η → 0, (29)

as observed in figures 1 and 2.
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5. Conclusions

Using a simple model of copolymerization, we have shown that free enthalpy can be
extracted from the environment in response to the entropic force corresponding to the
information stored in a growing copolymer sequence. The thermodynamic nonlinearity
associated with the information processing aspect is responsible for a branching of the
dependence on the affinity of system properties such as power, speed of growth and
efficiency. The nonlinear regime occurring after the branching is particularly surprising
since the entropy production keeps increasing even as the affinity begins to decrease.
We identified a regime of linear response where the efficiency of the energy extraction is
optimal (equal to 1), but where, as usual, the power output goes to zero. Considering
instead the efficiency at maximum power, we found that the universal prediction of linear
response theory (efficiency equal to 1/2) is inappropriate for this model. The reason
is that the copolymerization generating maximum power occurs far from equilibrium in
a region not accessible to linear response theory. Our results suggest a possible self-
powering mechanism for nonequilibrium systems that can extract chemical energy from
their surroundings by growing their internal structural information.
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