569 research outputs found

    User-driven design of robot costume for child-robot interactions among children with cognitive impairment

    Get PDF
    The involvement of arts and psychology elements in robotics research for children with cognitive impairment is still limited. However, the combination of robots, arts, psychology and education in the development of robots could significantly contribute to the improvement of social interaction skills among children with cognitive impairment. In this article, we would like to share our work on building and innovating the costume of LUCA's robot, which incorporating the positive psychological perspectives and arts values for children with cognitive impairment. Our goals are (1) to educate arts students in secondary arts school on the importance of social robot appearance for children with cognitive impairment, and (2) to select the best costume for future child-robot interaction study with children with cognitive impairments

    Adult onset thalamocerebellar degeneration in dogs associated to neuronal storage of ceroid lipopigment

    Get PDF
    Late onset of hereditary cerebellar cortical abiotrophy has been described in a large variety of canine breeds. In some reported conditions, the cerebellar lesion is combined with degeneration of other systems. Here we describe a new hereditary cerebellar cortical degeneration in eight adult American Staffordshire and Pit Bull Terriers. The neuronal degeneration in these animals not only affects Purkinje cells of the cerebellum but also certain thalamic nuclei. In addition, nerve cell loss appears to be associated with a lysosomal storage disease, which is restricted to the affected cell populations. The stored material was histologically and ultrastructurally identified as fluorescent lipopigment. Since animals were euthanized at various stages of the disease, it could be shown that lysosomal storage preceded neuronal loss. Selective involvement of restricted neuronal populations is highly unusual in ceroid lipofuscinoses. It remains to be determined if the present neurodegenerative disease is caused by a primary or secondary neuronal ceroid lipofuscinosi

    Embedding and assembly of ultrathin chips in multilayer flex boards

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Purpose – The purpose of this paper is to present results from the EC funded project SHIFT (Smart High Integration Flex Technologies) on the embedding in and the assembly on flex substrates of ultrathin chips. Design/methodology/approach – Methods to embed chips in flex include flip-chip assembly and subsequent lamination, or the construction of a separate ultra-thin chip package (UTCP) using spin-on polyimides and thin-film metallisation technology. Thinning and separation of the chips is done using a “dicing-by-thinning” method. Findings – The feasibility of both chip embedding methods has been demonstrated, as well as that of the chip thinning method. Lamination of four layers of flex with ultrathin chips could be achieved without chip breakage. The UTCP technology results in a 60 mm package where also the 20mm thick chip is bendable. Research limitations/implications – Further development work includes reliability testing, embedding of the UTCP in conventional flex, and construction of functional demonstrators using the developed technologies. Originality/value – Thinning down silicon chips to thicknesses of 25mm and lower is an innovative technology, as well as assembly and embedding of these chips in flexible substrates.EC/FP6/EU/507745/Smart high-integration flex technologies/SHIF

    Accelerated Mineral Carbonation of Stainless Steel Slags for CO2 Storage and Waste Valorization: Effect of Process Parameters on Geochemical Properties

    Get PDF
    This work explores the mineral carbonation of stainless steel slags in search for a technically and economically feasible treatment solution that steers these waste residues away from costly disposal in landfills and into valuable applications. Argon Oxygen Decarburization (AOD) and Continuous Casting (CC) slags prove ideal for mineral carbonation as their powdery morphology forgoes the need for milling and provides sufficient surface area for high reactivity towards direct aqueous carbonation. Experiments were undertaken using two methodologies: unpressurized thin-film carbonation, and pressurized slurry carbonation. The influence of process parameters (temperature, CO2 partial pressure, time, solids loading) on the slag carbonation conversion are investigated, seeking the optimal conditions that maximize the potential of the slags as carbon sinks. It was found that CC slag carbonates more extensively than AOD slag at essentially every processing condition due to differences in particle microstructure; still, it was possible to reach up to 0.26 and 0.31 g,CO2/g,slag uptake with AOD and CC slags, respectively, at optimal processing conditions via pressurized slurry carbonation. Mineral carbonation conversion was accompanied by significant reduction in basicity, as much as two pH units, and stabilization of heavy metals leaching, meeting regulatory limits (borderline for Cr) for safe waste materials re-use. Via quantitative mineralogical analyses, it was possible to differentiate the carbonation reactivity of several alkaline mineral phases, and to discern the preferential formation of certain Ca- and Mg-carbonates depending on the processing route and operating conditions. Slurry carbonation was found to deliver greater mineral carbonation conversion and optimal treatment homogeneity, which are required for commercial applications. However, thin-film carbonation may be a more feasible route for the utilization of slags solely as carbon sinks, particularly due to the elimination of several processing steps and reduction of energy demand

    Assessing pathological changes within the nucleus ambiguus of horses with Recurrent Laryngeal Neuropathy: an extreme, length-dependent axonopathy

    Get PDF
    Equine recurrent laryngeal neuropathy (RLN) is a naturally occurring model of length‐dependent axonopathy characterised by asymmetrical degeneration of recurrent laryngeal nerve axons (RLn). Distal RLn degeneration is marked, however it is unclear whether degeneration extends to include cell bodies (consistent with a neuronopathy). With examiners blinded to RLN severity, brainstem location and side, we examined correlations between RLN severity (assessed using left distal RLn myelinated axon count) and histopathological features (including chromatolysis and glial responses) in the nucleus ambiguus cell bodies, and myelinated axon count of the right distal RLn of 16 horses
    corecore