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ABSTRACT 

 

This work explores the mineral carbonation of stainless steel slags in search for a 

technically and economically feasible treatment solution that steers these waste residues away 

from costly disposal in landfills and into valuable applications. Argon Oxygen 

Decarburization (AOD) and Continuous Casting (CC) slags prove ideal for mineral 

carbonation as their powdery morphology forgoes the need for milling and provides sufficient 

surface area for high reactivity towards direct aqueous carbonation. Experiments were 

undertaken using two methodologies: unpressurized thin-film carbonation, and pressurized 
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slurry carbonation. The influence of process parameters (temperature, CO2 partial pressure, 

time, solids loading) on the slag carbonation conversion are investigated, seeking the optimal 

conditions that maximize the potential of the slags as carbon sinks. It was found that CC slag 

carbonates more extensively than AOD slag at essentially every processing condition due to 

differences in particle microstructure; still, it was possible to reach up to 0.26 and 

0.31 g,CO2/g,slag uptake with AOD and CC slags, respectively, at optimal processing 

conditions via pressurized slurry carbonation. Mineral carbonation conversion was 

accompanied by significant reduction in basicity, as much as two pH units, and stabilization 

of heavy metals leaching, meeting regulatory limits (borderline for Cr) for safe waste 

materials re-use. Via quantitative mineralogical analyses, it was possible to differentiate the 

carbonation reactivity of several alkaline mineral phases, and to discern the preferential 

formation of certain Ca- and Mg-carbonates depending on the processing route and operating 

conditions. Slurry carbonation was found to deliver greater mineral carbonation conversion 

and optimal treatment homogeneity, which are required for commercial applications. 

However, thin-film carbonation may be a more feasible route for the utilization of slags 

solely as carbon sinks, particularly due to the elimination of several processing steps and 

reduction of energy demand. 

 

Keywords: mineral carbonation; stainless steel slags; carbon sink; waste valorization; 

mineralogy; heavy metal leaching. 

 

1. Introduction 

 

Mineral carbonation involves the capture of carbon dioxide in a mineral form by its 

reaction with alkaline materials, composed of calcium- and magnesium-rich oxides and 

silicates, leading to the formation of solid carbonate products (Lackner et al., 1997). The 

principal aim and advantage of this approach is the geochemical stability and storage safety 

of mineral carbonates, the opportunities for process integration presented by the technology, 

due to the exothermicity of the reaction, that enable energy efficiency gains, and the potential 

for valorisation of otherwise low-value resources (virgin or waste) into useful products. 

However, several barriers still limit the deployment of mineral carbonation in industry, 

which, apart from the lack of legislative mandates for carbon capture and a sustainable CO2 

pricing scheme, include: the high energy intensity, slow reaction kinetics and low reaction 

conversions of traditional processing routes; complexities of the production chain and process 
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adaptability; and competition for attention with alternative carbon capture technologies (such 

as geological carbon capture and storage (CCS)). Matching the right alkaline materials with 

the right mineral carbonation processes is key to overcoming the barriers that prevent this 

technology from reaching the market (Santos and Van Gerven, 2011). 

Steel slags, by-products of steel production processes, are a widely available class of 

industrial waste materials that can potentially benefit from mineral carbonation through the 

reduction in basicity (pH), swelling stabilization, and reduction of heavy metals leaching 

(Baciocchi et al., 2010; Huijgen and Comans, 2006; Santos et al., 2012b, 2012c). Moreover, 

their high CO2 uptake capacities, coupled to the large on-site CO2 emissions of steelworks, 

offers opportunities for carbon capture credit gains. To date, most research on single-step 

aqueous carbonation of steel slags have focussed on Basic Oxygen Furnace (BOF) slag, 

originating from the second processing step of carbon steel production and notably studied by 

Huijgen et al. (2005) Huijgen and Comans (2006) and Chang et al. (2011a, 2011b, 2012, 

2013), and Electric Arc Furnace (EAF) slag, originating from the first step of the stainless 

steel production, with results recently reported by Baciocchi et al. (2010, 2011). However, a 

main disadvantage to the carbonation of these residues is the milling requirement to generate 

sufficient reactive surface area, as these slags solidify upon cooling in the form of monoliths. 

The present study focuses instead on two additional slags produced from the stainless 

steel process that possess powdery morphology and can benefit in a more energy efficient 

manner from mineral carbonation: Argon Oxygen Decarburization (AOD) slag, and 

Continuous Casting (CC) slag, also referred to as Ladle Metallurgy (LM) slag. These fine 

powders cause severe dusting issues during handling and storage in the steelworks; 

furthermore, the slag in this form cannot be readily re-utilized or valorised, and often must to 

be landfilled (Domínguez et al., 2010). Concerns regarding drainage from steel slag disposal 

sites, which can be extremely alkaline and a source of pollution to surface and ground waters 

(Mayes et al., 2008), add to the disposal costs. Treatment strategies including the addition of 

stabilizing ions, silica and rapid cooling, which aim at preventing the disintegration of the 

slags by hindering the expansive β- to γ- transformation of dicalcium silicate (C2S), have 

been tested and, in some cases, implemented in industry (Durinck et al., 2008). However 

costly and energy intensive processes, hazardous additives (boron), and low-value final 

products still force the industry to search for more sustainable solutions. 

Prior to the present study, we have reported in Santos et al. (2012b) findings on the 

carbonation of AOD and CC slags under atmospheric pressure bubbling slurry conditions, 

with and without the use of ultrasound for intensification of the reaction. Therein it was found 
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that at 50 °C and for up to 4 h reaction time, sonication increased the reaction rate, achieving 

higher carbonation conversion and lower basicity. AOD slag Ca-conversion increased from 

30% to 49%, and pH decreased from 10.6 to 10.1, while CC slag Ca-conversion increased 

from 61% to 73% and pH decreased from 10.8 to 9.9. The enhancement effect of ultrasound 

was attributed to the removal of passivating layers (precipitated calcium carbonate and 

depleted silica) that surround the unreacted particle core and inhibit mass transfer. However, 

an efficiency analysis pointed to significant challenges for scale-up of this technology, due to 

the high energy consumption of the ultrasound process, resulting in net negative CO2 capture. 

In search of more feasible processing conditions (technically and sustainably), this work 

explores two additional routes for the mineral carbonation of AOD and CC slags: (i) 

unpressurized thin-film carbonation, and (ii) pressurized slurry carbonation. Both 

methodologies are viewed as offering lower energy intensity compared to ultrasound 

carbonation, the former being performed under passive/mild conditions, while the latter has 

the potential to deliver reaction rate intensification in a more efficient manner. Herein, 

experiments are undertaken to investigate the influence of process parameters (temperature, 

CO2 partial pressure, time, solids loading) on the slag carbonation kinetics, including CO2 

uptake and mineral conversion, seeking the optimal conditions that maximize the potential of 

the slags as carbon sinks. The heavy metal leaching and basicity behaviours are also 

evaluated to characterize the geochemical character of the carbonated materials, whose 

mineralogical composition, including the formed carbonate phases, are assessed and 

quantified. 

 

2. Materials and methods 

 

2.1 Materials characterization methodologies 

 

The chemical composition of the slags was determined by X-ray Fluorescence (XRF) 

analysis, using a sequential wavelength dispersive spectrometer (PANalytical PW 2400) and 

SuperQ software for quantification; measurement uncertainty is approximately ± 2 units of 

the last significant figure reported, and verifiable detection limit is ~0.01 wt%. The volume-

based particle size distributions and the average particle diameters, expressed as D[4,3] 

(volume moment mean diameter) and D[3,2] (surface area moment mean diameter) were 

determined by wet Laser Diffraction (LD, Malvern Mastersizer) in sonicated deionized water, 

with a measurement uncertainty of ± 5 %, determined by replicates, and detection range of 
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0.06–878.7 μm. The morphology of fresh and carbonated powders was observed by Scanning 

Electron Microscopy (SEM, Philips XL30) and inspected with Energy-dispersive X-ray 

Spectroscopy (EDX). 

The mineralogical composition of the slags was determined by semi-quantitative X-Ray 

Diffraction (QXRD), adapting the methodology of Snellings et al. (2010). Measurements 

were performed on a Philips PW1830 equipped with a graphite monochromator and a gas 

proportional detector, using Cu Kα radiation at 30 mA and 45 kV, step size of 0.03° 2θ and 

counting time of 2 s per step, over 10–65° 2θ range. Mineral identification was done in 

Diffrac-Plus EVA (Bruker) and mineral quantification was performed by Rietveld refinement 

technique using Topas Academic v4.1 (Coelho Software). Mahieux et al. (2010) verified that 

QXRD of complex mineral wastes can be performed coherently and reliably, though it 

inherently carries a level of uncertainty. In this work the ‘goodness of fit’, calculated in 

Topas, for AOD and CC slag samples averaged to 1.45 ± 0.09 and 1.42 ± 0.13, respectively. 

Mineral composition and conversion values were calculated based on the methodology 

detailed in our recent study reported in Bodor et al. (2013), whereby the mass fractions 

delivered by Rietveld analysis are translated into molar fractions normalized against the pre-

carbonation mass of the materials (to discount the CO2 uptake mass after carbonation, which 

artificially lowers the mass fractions of non-carbonate components) and the formation of 

amorphous materials during carbonation is taken into account (which, if ignored, causes 

overestimation of mineral mass fractions) by utilizing the calcium mass balance as a 

reference. This data handling procedure enhances the accuracy of conversion values and 

allows for more precise comparison of the results, as opposed to the simple comparison of 

pre-carbonation composition to post-carbonation composition. Mean quantification accuracy, 

based on replicate analyses, has been estimated for steel slags in the present study at 

± 2.3 wt% of the quantified amount. 

The CO2 uptake of carbonated materials was quantified by Thermal Gravimetric 

Analysis (TGA, Netzsch STA 409). An amount of ~100 mg sample was weighed in a sample 

pan heated from 25 to 900 °C under nitrogen flow at a heating rate of 15 °C/min. The weight 

loss was recorded by the TGA microbalance and the amount of CO2 released was quantified 

by the weight loss between 300–800 °C. It was verified using pure Ca- and Mg-carbonates 

(Fig. S1 in the Supplementary Content) that this temperature range covers the CO2 release 

region, and excludes the low temperature region where hydrates decompose. While this 

temperature range also overlaps with the dehydroxylation region of Ca(OH)2 (~340–430 °C), 

the interference is assumed to be negligible due to the lack of evidence of the formation of 
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hydroxylated products by XRD and Fourier transform-infrared (FTIR). The method 

reproducibility, caused by sample size and inhomogeneity, and assessed by replicates, was 

± 2 %. Carbonation conversion is then calculated as the ratio of CO2 uptake experimentally 

determined to the theoretical CO2 uptake capacity of the slag (given in section 2.2). Loss on 

ignition (LOI) of fresh samples was also determined by TGA, and quantified by the weight 

loss between 25 and 800 °C. FTIR spectra of sample powders were recorded on a Perkin 

Elmer Frontier spectrometer with attenuated total reflection (ATR) accessory in the region of 

4000–650 cm
-1

 at a resolution of 1 cm
-1

. 

Determination of aqueous elemental concentrations was performed by Inductively 

Coupled Plasma Mass Spectroscopy (ICP-MS, Thermo Electron X Series); measurement 

accuracy, determined using standard solutions (diluted from 1000 mg/L Merck CertiPUR 

elemental standards), was ± 2 %. 

 

2.2 Stainless steel slags 

 

The AOD and CC stainless steel slags were obtained from a Belgian steelworks. The 

materials were freshly collected from the production process, and were stored in sealed 

containers to avoid atmospheric weathering. It was verified by TGA that the CO2 contents of 

the uncarbonated slags at the completion of the study were < 0.010 g,CO2/g,slag. Prior to 

analyses or experimentation, the materials were sieved to < 500 µm particle size to remove a 

small portion of coarse particles (< 5 wt%). Particle size distributions, determined by LD, are 

presented in Fig. S2 in the Supplementary Content, and indicate bimodal distributions with 

maxima between 0.1–1 μm and 10–100 μm. AOD slag has D[4,3] = 46.1 μm and D[3,2] = 

3.9 μm, and CC slag has D[4,3] = 39.3 μm and D [3,2] = 2.8 μm. 

The chemical compositions of the slags, determined by XRF analysis, are presented in 

Table 1. Both slags contain high concentrations of calcium and moderate concentrations of 

magnesium, components which imparts these materials their alkaline properties and reactivity 

towards mineral carbonation. These values are used for calculating the maximum theoretical 

CO2 uptake capacities of the slags. AOD and CC slags have CO2 uptake capacity of 0.528 

and 0.520 g,CO2/g,slag, respectively. Expressed as mass percentages, these values correspond 

to 34.2 and 34.6 wt%,CO2, respectively. Trace elements detected by XRF, present in 

quantities of 0.1–0.01 wt%, are, in decreasing order: AOD: Sr, Nb, V, La, Cl, Zr; CC: V, K, 

Cl, Nb, Ni, Sr, Zn, Mo, Pb. 
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The mineralogical compositions of the slags, determined by QXRD, are presented in 

Table 2. The diffractograms of these materials are provided in Fig. S3 in the Supplementary 

Content. The main mineral phase of both AOD and CC slags is gamma-dicalcium-silicate (γ-

C2S, Ca2SiO4), of which the latter contains significantly greater amount. AOD slag notably 

contains greater quantities of bredigite (Ca14Mg2(SiO4)8), cuspidine (Ca4Si2O7F2), β-C2S 

(Ca2SiO4), and merwinite (Ca3Mg(SiO4)2), while CC slag possesses significantly more 

periclase (MgO) and enstatite (Mg2Si2O6). 

 

2.3 Thin-film carbonation methodology 

 

Thin-film carbonation consists in reacting moist solids with a CO2/air mixture within an 

incubator. The slag samples were initially wetted with ultrapure water to obtain 25 wt% 

moisture content: 100 g mixed with 33.3 ml H2O. This moisture content was determined as 

optimal based on preliminary tests performed by Vandevelde (2010) and reported in Santos et 

al. (2010). These studies showed that it is necessary to maintain the moisture content between 

10–35 wt% for the duration of the experiment to sustain the thin-film carbonation reaction, 

which was aided by maintaining near saturation relative humidity. This serves to minimize 

sample dry-out that can occur due to the exothermic heat of reaction during carbonation, and 

to prevent flooding of the sample, which can hinder the diffusion of CO2 towards the reaction 

front at the solid-liquid interface. Also reported were superior carbonation performances at 

30 °C (versus 50 °C) and at 20 vol% CO2 partial pressure at 1 atm total pressure (versus 

10 vol%), as a result of improved CO2 solubility under these conditions. 

In the present study, the moist pastes were thinly spread on trays and placed in a CO2–

chamber (Sanyo CO2 incubator MCO-17, pictured in Fig. S4 in the Supplementary Content) 

at 30 °C, under a CO2 partial pressure of 0.2 atm (balance air) and ~95% relative humidity. 

The samples were rewetted during the experiment, at 26 h (addition of 13.3 ml H2O, or 2/5 of 

initial moisture content) and at 94 h (addition of 20 ml H2O, or 3/5 of initial moisture 

content). At the same time as re-wetting, samples were lightly deagglomerated using a pestle, 

as carbonation can lead to cementitious behaviour of the stationary material, thus decreasing 

powder surface area and hindering carbonation progression (Vandevelde, 2010). Intermediate 

samples were collected at these times and dried at 60 °C for 24 h. The remaining carbonated 

samples were removed from the CO2–chamber after six days (144 h) of carbonation, and 

subsequently dried at 60 °C for 24 h. The weight change during drying was used to determine 

free moisture content of the collected samples. 
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2.4 Slurry carbonation methodology 

 

Slurry carbonation of stainless steel slags was conducted in a Büchi Ecoclave 300 Type 

3E autoclave reactor (Büchi Glas Uster AG, pictured in Fig. S5 in the Supplementary 

Content) of 1.1 litre internal volume, equipped with cyclone impeller stirrer (0 to 2000 rpm), 

electric-heating/water-cooling jacket, and capable of operating at pressures of 0 to 60 barg 

and temperatures of 20 to 250 
o
C. Experiments were conducted using 800 ml ultrapure water, 

1000 rpm stirring speed and industrial grade (99.5 % purity) CO2 (Praxair). Process 

parameters varied were: temperature (T, 30–180 °C), CO2 partial pressure (P, 2–30 bar), 

reaction time (t, 5–120 min), and solids loading (S, 25–250 g/L). Parameters were varied 

individually, using the following median condition as a baseline: 90 °C, 6 bar,CO2, 60 min, 

and 62.5 g/L. The carbonated slurry was vacuum filtered using Whatman 5 filter paper 

(2.5 μm nomimal pore size) and the recovered solids were oven dried at 105 °C for 4 h. 

Select experiments were performed in duplicate for data validation; average reproducibility 

of measured carbonation conversion, determined in similar manner as Huijgen and Comans 

(2006), was ± 2.9 % (reproducibility data presented in Fig. S6 in the Supplementary Content). 

Geochemical modelling of aqueous carbonation equilibria was performed using Visual 

MINTEQ (ver. 3.0, KTH). The activity coefficients were calculated using the Davies 

equation, valid for the ionic strengths modelled here (< 1 M), and the gas solubilities were 

found to be in good agreement with the experimental and modeling data presented in 

Rosenqvist et al. (2012). 

 

2.5 Batch leaching test methodology 

 

Leaching tests were performed, in triplicates, on fresh and carbonated slag samples to 

determine the effect of carbonation on the mobility of regulated metals and on the material 

basicity. For each sample, an amount of 10 grams of solids was mixed with 100 ml ultrapure 

(18.2 MΩ∙cm) water (L/S = 10) in a sealed PE bottle, and shaken on a vibration table 

(Gerhardt Laboshake) at 160 rpm and 25 °C for 24 hours. Solution pH was measured to 

determine basicity (± 0.1 pH units); basicity values were compared to the values of pure 

carbonates modelled using Visual MINTEQ. The leaching solution was filtered with 0.45 μm 

membrane filter prior to dilution for ICP-MS measurement; solution matrix was 0.3 M nitric 

acid. Elemental concentration reproducibility, based on replicates, averaged ± 15 %. Table 3 
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presents heavy metals and metalloids detected and their respective leaching limits (in 

milligrams metal leached per kilogram dry solid) according to Belgian Walloon regulations 

for secondary materials re-use in non-structural applications (Ministère de la Région 

Wallonne, 2001). 

 

3. Results 

 

3.1 CO2 uptake 

 

3.1.1 Thin-film carbonation CO2 uptake 

 

Thin-film carbonation experiments were conducted to assess the carbonation extent and 

the geochemical changes resulting from mineral exposure to CO2 at mild operating 

conditions, in view of developing a technically and economically feasible process for 

industrial implementation of stainless steel slag carbonation. Results of the thin-film 

carbonation experiments on AOD and CC slags are presented in Fig. 1 in the form of 

thermogravimetrical curves. The mass loss upon heating is directly correlated to the 

decomposition of carbonates and hydrates, which occur at discrete temperature ranges, and 

thus can be used to estimate carbonation conversion as the ratio between actual CO2 uptake 

and theoretical CO2 uptake capacity. 

Two distinct mass loss regions are observed, one below 250 °C, and another between 

600–800 °C. The former can be attributed to loss of H2O from chemically bonded water, 

while the latter belongs to the CaCO3 decomposition reaction. Between 250–600 °C the 

curves display gradually declining slopes. This temperature range corresponds to a number of 

possible reactions, including dehydroxylation and magnesium-containing carbonate 

decompositions reactions, such as those indicated in Fig. S1 and reported by Hollingbery and 

Hull (2012), and the decomposition of amorphous or poorly crystalline carbonate species, 

reported by Cizer et al. (2012). In any case, the mass losses in this intermediary temperature 

range are significantly smaller than at the comparatively high and low temperature ranges, 

meaning that small quantities of these species are formed. 

It is observed by inspection of the trends in Fig. 1 that the reaction extent of CC slag is 

greater than that of AOD after 94 hours for all three temperature ranges, indicative of greater 

formation of all aforementioned species. This is quantified by the carbonation conversion 

values presented, where CC slag achieves 28.0 % conversion at 94 hours, compared to 
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19.0 % for AOD slag, and 37.0 % conversion after 144 hours, compared to 24.2 % for AOD 

slag. During the first 26 hours, however, the carbonation extents of both slags are 

comparable. This suggests that carbonation kinetics of both slags are initially similar, just as 

their chemical and mineralogical compositions are also similar, but the progression of AOD 

slag carbonation becomes hindered earlier than in the case of CC slag. 

Passivating layers composed of carbonate products, residual silica and unreactive 

minerals were shown in our previous study (Santos et al., 2012b) to form during mineral 

carbonation, restricting contact between the unreacted core and the dissolved CO2 in the 

aqueous medium and thus slowing down or even stopping the reaction progress. In that study, 

performed using atmospheric pressure bubbling slurry conditions, carbonation conversion 

values (recalculated to account for the sum of Ca and Mg content of the slags) for AOD and 

CC slags reached plateaus at 25.8 % and 48.5 %, respectively, after four hours of reaction 

time (and without using sonication for removal of passivating layers). The results in the 

present study, though reached only after extensively longer processing times, are comparable, 

suggesting that the reaction extent limitation mechanism may be similar. Additional thin-film 

carbonation processing time may still marginally increase conversion under the tested 

conditions, but this would be unattractive from an industrial application perspective. 

In the present thin-film carbonation methodology, two additional factors can play a role 

in limiting reaction progression: (i) sample moisture, and (ii) cementitious behavior of the 

sample paste. The exothermic heat of the carbonation reactions partially evaporates water 

from the sample paste over time. Water can also be consumed in the carbonation reactions 

through the formation of hydrated mineral phases (e.g. calcium-silicate-hydrate (CSH), 

monohydrocalcite (CaCO3·H2O), hydromagnesite (Mg5(CO3)4(OH)2·4H2O), nesquehonite 

(MgCO3·3H2O), etc.). Insufficient moisture can significantly reduce or even cease the rate of 

reaction (Vandevelde, 2010). Table 4 presents the moisture content of the slags as a function 

of time. The moisture content of CC slag drops significantly more than that of AOD slag. 

Between the 3 and 26 hour samplings, the moisture content of CC slag is reduced by 

9.1 wt%, versus 4.3 wt% for AOD slag. At the 94 hour sampling, despite prior re-wetting, CC 

slag moisture is only 3.8 wt%, while AOD moisture is stabilized near 18 wt%. At the 144 

hour sampling the moisture content of CC slag is again much lower than that of AOD slag, 

despite prior re-wetting at the 94 hour mark. Lowering of CC slag moisture content, however, 

does not appear to significantly hinder reactivity towards carbonation, as it achieves greater 

carbonation extent than AOD slag (as previously shown in Fig. 1). In fact, the moisture loss 
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can be proportionally related to carbonation conversion, as well as to the formation of 

hydrated phases suggested by the mass loss measured by TGA at temperatures below 250 °C. 

In terms of cementitious behavior, both slags presented hardening during carbonation. 

This phenomenon is caused by aggregation of precipitating carbonate crystals that bond 

individual particles and form a solid matrix. This behavior has led to the investigation of 

using stainless steel slags as binders in construction materials applications (Kriskova et al., 

2012). However, for carbonation purposes, this behavior can potentially lead to reduced paste 

porosity and permeability, and thus hinder carbonation progression. Comparatively, as 

assessed during deagglomeration of the material by mortar and pestle during re-wetting, CC 

slag hardened more and continued to harden after each sampling, while AOD slag hardening 

decreased as a function of time. Therefore, it does not appear that the cementitious behavior 

is the principle reason for the inferior carbonation performance of AOD slag. Cizer et al. 

(2012) propose that the evaporation of water decreases the pore water content and allows 

better diffusion of gaseous CO2 into the bulk volume of lime paste through the open paths 

formed along the sample depth, thus aiding carbonation progression. Additional possibilities 

for lower AOD slag reactivity are particle morphology and microstructure, and its 

mineralogical composition, which are assessed in section 3.2. 

 

3.1.2 Slurry carbonation CO2 uptake 

 

Slurry carbonation experiments were conducted to assess the carbonation extent and the 

geochemical changes resulting from mineral exposure to CO2 at a range of process 

conditions, seeking to intensify the mineral carbonation reaction and thus achieve greater 

CO2 uptake and carbonation conversion than previously tested methods. Slurry carbonation 

also has the benefit, versus thin-film carbonation, of improved mass transfer and enhanced 

particle attrition, due to continuous mixing of the solids in suspension. Fig. 2 shows the 

results of the slurry carbonation experiments on AOD and CC slags, where the effect of four 

process variables (T, P(CO2), t, and S) on the carbonation conversion (expressed as 

percentage of the maximal CO2 uptake), determined by TGA, is presented. 

Under nearly all conditions tested, CC slag carbonation conversion surpassed that of 

AOD slag when exposed to identical process parameters, in agreement with previously tested 

methodologies. This reaffirms that slag mineralogy, morphology and microstructure are the 

likely causes for this discrepancy; more details on this investigation in section 3.2. The effect 

of temperature on carbonation conversion of both slags appears to be small (Fig. 2a). 
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However, it should be noted that experiments with temperatures above 100 °C required 

additional cooling time prior to depressurization, up to 60 minutes in the case of 180 °C. 

Since CO2 remained present in the reactor during cooling, carbonation reaction likely 

continued over time, and also at different temperatures until reaching 100 °C, when the 

reactor was opened. This may explain why the negative effect of high temperatures, namely 

reducing CO2 solubility (depicted in Fig. 3), is not seen. Still, in the case of CC slag, 

carbonation conversion did not surpass those achieved at 90 °C and below, while in the case 

of AOD, slight improvement is seen, particularly comparing results at 90 °C and 120 °C. As 

the cooling time at 120 °C was only in the order of five minutes, the moderately higher 

temperature appears to have contributed to its carbonation conversion, though no further 

benefit is seen from higher temperature experiments. It should also be noted that this series of 

experiments was conducted using 6 bar,CO2; the influence of temperature under different 

baseline partial pressures may differ. For instance, at lower pressures the CO2 solubility is 

more significantly affected by temperature than at higher pressures (Fig. 3). 

The CO2 partial pressure resulted in more significant changes in carbonation conversion 

(Fig. 2b). Up to 9 bar, both slags responded well to increased pressure, displaying conversion 

improvements in the order of 15 %. After this point, CC slag displayed a peculiar reduction in 

conversion in the order of 20 %, which only recovered to previous levels at 20 bar; this trend 

was absent from AOD slag results. As such, maximal CC slag conversion occurred both at 9 

and 30 bar, while AOD slag conversion peaked at 15 bar. Mechanistically, increased CO2 

pressure results in greater CO2 solubility, but also in lower solution pH (Fig. 3), due to the 

formation and dissociation of carbonic acid. The complex equilibria result in increased 

CaCO3 solubility at higher pressure, but even at 30 bar and 30 °C total dissolved Ca remains 

below 1.5 g/L (Fig. 3). This explains why increased pressure is not detrimental to carbonation 

conversion. 

Prolonged reaction time proportionally increased carbonation conversion of both slags 

(Fig. 2c). Carbonation reactivity was found to be very fast; within one minute of carbonation 

time carbonation conversion of AOD and CC slags reached 17.1 % and 23.3 %, respectively. 

Thereafter carbonation conversion continued to increase in approximately linear fashion up to 

120 minutes. During the first 30 minutes the conversion difference between AOD and CC 

slags remained around 7 %, and widened to 12 % after 120 minutes. The slopes of the curves 

suggest that additional reaction time may further increase conversion, but that they would 

unlikely surpass roughly 50 and 60 % for AOD and CC slags, respectively. The values at 120 

minutes, however, are similar to maximal conversion obtained in our previous study (Santos 
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et al., 2012b) when using sonication. Hence the increased temperature, pressure and better 

mixing of the present study serve as efficient alternatives for the intensification of the mineral 

carbonation reaction compared to the energy intensive sonication applied at milder process 

conditions. On the other hand, sonication of the slurry at present intensified conditions could 

serve to speed reaction conversion, particularly after the 15 minute mark when diffusion 

through the passivating layers, pictured in Fig. 4, becomes rate limiting. 

The last parameter changed during slurry carbonation was solids loading (Fig. 2d). It is 

not expected that solids loading should have a significant effect on carbonation conversion 

due to exhaustion of dissolved CO2, especially at prolonged reaction times. Rather, solids 

loading can affect the rate and intensity of interparticle collisions, and the mixing efficiency. 

CC slag results suggest that diminished particle interaction, and consequently surface erosion, 

limits carbonation conversion. This effect, however, is not seen in the case of AOD slag. At 

high solids loading both slags exhibit a drop-off in carbonation conversion, which can be due 

to poorer mixing of the dense slurry, and consequently lower mass transfer rates as well as 

reduced particle collisions. This effect is also greater in the case of CC slag. The mild effect 

of solids loading on carbonation conversion bodes well for scale-up of this technology, as 

industrial implementation can benefit from the decreased reactor volume required for the 

treatment of dense slurries. Furthermore, better mixer, reactor geometry and baffle 

configuration designs can likely extend the carbonation conversion drop-off to higher solids 

loadings. To conclude, it can be said that the maximum achievable CO2 uptake capacities of 

AOD and CC slags, assuming 50 % and 60 % maximal conversions, are 0.264 and 

0.312 g,CO2/g,slag (or 20.9 and 23.8 wt%), respectively. 

 

3.2 Mineralogy 

 

Stainless steel slags consist of a mixture of mineral phases, including several varieties of 

alkaline silicates (e.g. bredigite, cuspidine, β- and γ-dicalcium silicates (C2S), and merwinite) 

and (hydr)oxides (e.g. brucite, lime, periclase and portlandite). It is likely that these different 

minerals have different carbonation affinities and kinetics. Doucet (2010) showed that even 

in 0.5 M HNO3, only 70–90% of Ca and 40–80% of Mg are leached from finely milled BOF 

and EAF slags. Moreover, different phases may respond differently to changes in mineral 

carbonation process conditions (i.e. temperature and pressure). Such behaviors may help 

explain why the maximal achievable carbonation conversions presented in the previous 

section are significantly lower than the theoretical capacities. 
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Additionally, the morphological configuration of the mineral phases can affect the 

exposure of different minerals to the reacting aqueous medium. Fig. 4 suggests that 

individual particles of fresh CC slag are primarily composed of specific minerals, as they 

display clear morphological differences (more images provided in Fig. S7 in the 

Supplementary Content). Inspection of individual particles by EDX (presented in Fig. S8 in 

the Supplementary Content) demonstrated that rod shaped particles consist of calcium silicate 

(recent studies by our group on pure synthetic minerals, reported in Bodor et al. (2013), 

confirmed such crystalline morphology belonging to γ-C2S). The chemical composition of 

particles of apparent smooth surface corresponded well to periclase, while two chemistries of 

coarse particles were observed, correlating well with β-C2S and calcium-magnesium silicates. 

AOD slag particles do not possess discernible morphological features, and EDX analysis did 

not distinguish particular mineral chemistries. It thus appears that the crystallization of these 

two slags upon cooling differs, either due to slight differences in chemical composition or 

due to differences in the cooling paths they undergo in the production process (e.g. quenching 

rates). 

Carbonated slag samples were analyzed by QXRD to elucidate the behavior of the major 

alkaline mineral phases towards mineral carbonation. Time-dependent results of thin-film and 

slurry carbonation samples are presented in Figs. 5 and 6, respectively. Pressure- and 

temperature-dependent results of slurry carbonation samples can be found, respectively, in 

Figs. S9 and S10 in the Supplementary Content. Despite using the QXRD data handling 

procedure of Bodor et al. (2013) to enhance the accuracy of conversion values and allows for 

more precise comparison of the results, as opposed to the simple comparison of pre-

carbonation composition to post-carbonation composition, the semi-quantitative nature of the 

Rietveld analysis of complex mineral samples is reflected in the magnitude of the error bars, 

which are intuitively larger for phases present in smaller quantities in the slags. 

It is observed in Fig. 5 that the carbonation conversion of C2S polymorphs dominates 

the CO2 uptake of both slags during thin-film carbonation. Bredigite conversion also reaches 

significant values, contributing well to AOD slag CO2 uptake given its large content. 

Cuspidine, merwinite and periclase reactivities are comparatively poor in both slags; some 

low extent observed conversions of these minerals may be due to quantification variability 

caused by diffraction peak overlap, reducing confidence in these trends. It appears that the 

better carbonation conversion of γ-C2S in CC slag over AOD slag, and the greater content of 

this mineral phase in CC slag over AOD slag, largely accounts for the higher CO2 uptake 

achieved by CC slag over prolonged thin-film carbonation reaction times. 
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Mineral conversion is generally significantly improved in slurry carbonation, as 

observed in Fig. 6. Partial carbonation conversion is observed for nearly all reported phases 

in both slags. The conversion of β-C2S and γ-C2S appears to occur and stabilize faster, while 

the carbonation conversions of bredigite, cuspidine and periclase generally improve over 

time. The latter two phases were poorly reactive in thin-film carbonation; hence benefit most 

from the increased intensity of slurry carbonation. Merwinite appears to react well in CC 

slag, but remained essentially unconverted in AOD slag; though uncertainty in the CC slag 

composition value (7 wt%) could contribute to overestimation of its conversion in this slag. It 

is otherwise difficult to identify mineralogical reasons for the better CO2 uptake of CC slag 

over AOD slag, as quantification uncertainties can mask the differences of concurrently 

converting minerals. 

Mineral conversion values as a function of temperature (see Fig. S9) did not display 

particularly conclusive trends, with the exception of improved γ-C2S carbonation from AOD 

slag at higher temperatures. As the overall CO2 uptake values of these samples were quite 

similar (as previously presented in Fig. 2a), it can be said that temperature does not appear to 

promote the reactivity of any particular phase (at 6 bar CO2 partial pressure). Carbonation 

pressure had a more noticeable effect on AOD slag mineralogy (see Fig. S10), with 

meaningful improvements in β-C2S, merwinite and periclase conversions at higher pressures. 

The noticeably lower CO2 uptakes of CC slag at 12-15 bar (Fig. 2b), however, appear to be 

related to decreased reactivity of these same mineral phases under these intermediary 

conditions. 

It was also possible to utilize QXRD analysis to assess the formation of different 

carbonate mineral phases. Time-dependent results of thin-film and slurry carbonation 

samples are presented in Fig. 7; pressure- and temperature-dependent results of slurry 

carbonation samples can be found in Fig. S11 in the Supplementary Content. A total of ten 

different carbonate phases were detected, ranging from pure Ca-carbonates (namely calcite 

(CaCO3), aragonite (CaCO3), vaterite (CaCO3) and monohydrocalcite (CaCO3·H2O)), to Ca-

Mg-carbonates (magnesian calcite (Ca1-0.85Mg0-0.15CO3), dolomite (CaMg(CO3)2) and huntite 

(Mg3Ca(CO3)4)), to pure Mg-carbonates (magnesite (MgCO3), nesquehonite (MgCO3·3H2O) 

and hydromagnesite (Mg5(CO3)4(OH)2·4H2O)). 

Calcium-containing carbonates were the predominant products after carbonation, given 

the high calcium content of the slags. Calcite is generally the most common mineral variety, 

followed by aragonite and monohydrocalcite; no significant amount of vaterite was detected. 

Aragonite formation predominates in slurry carbonated samples, especially those treated to 



DOI:10.1016/j.ijggc.2013.04.004 

16 

 

higher temperatures (see Fig. S11); its formation is known to be promoted under elevated 

temperatures (≥ 70 °C) and in the presence of Mg-ions (Santos et al., 2012a). Conversely, 

monohydrocalcite was observed almost exclusively in thin-film carbonated samples, where 

the milder process conditions, higher reaction pH and/or slower reaction kinetics may aid in 

its stability. Nishiyama et al. (2013) found a positive correlation between higher reacting 

solution pH and preferential formation of monohydrocalcite over anhydrous CaCO3. In fact, 

the basicity of CC slag is higher than that of AOD slag (more details in Section 3.3), which 

may explain the greater monohydrocalcite content found in thin-film carbonated CC slags 

(Fig. 7a). In addition, Fukushi et al. (2011) have shown that monohydrocalcite is an 

intermediate product in the transition of amorphous calcium carbonate to stable calcite or 

aragonite. This may explain its time-dependent behavior, as it appears to form after 

prolonged periods (≥ 26 h) in the CO2 chamber. 

Substantial amounts of Ca-Mg-carbonates also form, especially magnesian calcite, 

followed by the more Mg-rich dolomite. Furthermore, their presence seems to occur in 

samples that contain less calcite and aragonite. This suggests that under certain conditions the 

Mg-ions that inhibit calcite growth and promote aragonite formation become trapped in the 

forming crystal, and as the Mg substitution in the CaCO3 matrix creates strains on the 

crystalline structure that increase its solubility (Railsback, 2006), mineralogy evolution 

towards magnesian calcite takes place. Carbonated slag samples that contain more magnesian 

calcite also tend to contain greater quantities of other Mg-containing carbonates, although 

there is no clear trend with regards to time, temperature or pressure dependency. 

Nesquehonite and hydromagnesite are the predominant Mg-carbonates formed, both in thin-

film and slurry carbonation. However, nesquehonite is more commonly found in AOD slag 

samples, while hydromagnesite is almost exclusively seen in CC slag samples. Zhang et al. 

(2006) suggest that hydromagnesite is preferentially formed over nesquehonite at higher pH; 

the higher basicity of CC slag compared to AOD slag (discussed in Section 3.3) may explain 

this difference in Mg-carbonate mineralogy. Huntite and magnesite, though detected, are 

usually quantified under the margin of error attributed to each sample based on QXRD 

uncertainty (plotted on each figure). The preferential formation of hydrated Mg–carbonates 

over the anhydrous magnesite is explained by the large ionic potential of Mg, which 

promotes hydration in solution (Railsback, 2006). 

 

3.3 Heavy metal leaching 

 



DOI:10.1016/j.ijggc.2013.04.004 

17 

 

Mineral carbonation of stainless steel slags not only serves to capture CO2, but is also 

beneficial to improving geochemical properties of the material, thus helping to meet safe 

disposal or re-utilization requirements (Baciocchi et al., 2010; Huijgen and Comans, 2006; 

Santos et al., 2012c). Leaching tests were used to observe the effect of carbonation on the 

basicity of the solid samples, expressed by pH value in water, and on the heavy metals 

leached from these solids into solution. Carbonation can have an effect on these parameters 

due to three phenomena. Firstly, calcium and magnesium hydroxides, originating from the 

hydration of free oxides or silicates, convert to carbonates. The pH value of pure Ca(OH)2 in 

solution is 12.4 at 25
o
C (predicted by geochemical modelling); likewise the pH of CaCO3 in 

solution is 8.2–9.9 (depending on CO2 saturation in solution). As a result, it is expected that 

fully carbonated slags exhibit lower basicity. Secondly, the formation of a carbonate layer 

blocks access of inner unreacted alkaline minerals to the solution. This can also contribute to 

a gradual pH reduction as a function of carbonation progression (Santos et al., 2012b). Lastly, 

the conversion of some metal (hydr)oxides to metal carbonates changes the solubility of these 

metals (e.g. BaCO3, PbCO3, ZnCO3 (Fernández-Bertos et al., 2004)). 

Fig. 8 confirms the aforementioned hypotheses. Data of slurry carbonation are plotted 

together for samples carbonated for different times, temperatures and CO2 partial pressures to 

illustrate the trend as a function of CO2 uptake. Thin-film carbonation data correspond to 

samples collected at varying treatment times. Samples with greater CO2 uptake, and thus 

higher carbonation conversion, exhibited lower pH. Particularly, the greater reaction extents 

obtained by slurry carbonation resulted in better basicity improvement compared to thin-film 

carbonation. It was possible to reduce the pH of AOD/CC slags from11.7/12.3 to as low as 

9.4/9.7 after slurry carbonation, compared to 10.9/10.8 for the longest duration of thin-film 

carbonation. Compared to our previous study (Santos et al., 2012b), performed under 

atmospheric pressure bubbling slurry conditions and yielding maximal basicity reductions to 

pH of 9.9/10.1, the pH values from pressurized slurry carbonation have been improved due to 

greater carbonation conversions, entering the range of CaCO3 basicity control. Basicity 

reduction as a function of CO2 uptake progresses approximately linearly. It is likely that pH is 

initially controlled by silicate hydrates (above pH 11 (Chen et al., 2004)), followed by 

hydrated carbonates (below pH 10.8, assessed by geochemical modelling), and finally by 

CaCO3 polymorphs below pH 10. It is also notable that AOD slag basicity is lower than that 

of CC slag initially, and remains so for comparable levels of CO2 uptake. This may be due to, 

other than mineralogical differences, greater exposure of the slag’s different alkaline minerals 

(which have different solubilities and reactivities towards hydration and carbonation) to the 
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aqueous medium, given the observed differences in particle morphology (Fig. 4 and Fig. S7). 

As carbonate precipitation is accelerated at high pH, the differing slag basicities, potentially 

buffering the carbonating medium to slightly different pH levels, could play a role in the 

greater CO2 uptakes achieved by CC slag at comparable pH values (as inferred on Fig. 8). 

The heavy metal leaching values of the solutions for which pH was measured are 

presented in Fig. 9 for slurry carbonation, and in Fig. S12 in the Supplementary Content for 

thin-film carbonation. The heavy metals measured correspond to those presented in Table 3, 

eleven of which are currently regulated in Wallonia (Belgium) for materials re-use. The 

concentrations of As in all solutions were below the detection limit of ICP-MS, and are 

therefore not reported. Horizontal dashed lines in the figures indicate the regulatory limits of 

respective elements; where no line is seen, the limit is greater than all measured values and 

the plotted y-axis scale. Accordingly, only four elements present significant leaching risk: Cr, 

Mo, Pb and Zn. 

The rightmost data point of each data series on the graphs, at the highest pH, 

corresponds to the fresh slag; all other points are carbonated samples. Fresh AOD slag does 

not exceed any limit, though it comes close for Cr and Zn. Fresh CC slag exceeds limits for 

Cr and Pb, and approaches those for Mo and Zn. Carbonation successfully decreases leaching 

of Mo, Pb and Zn, where slurry carbonated samples (Fig. 9) generally fall farther below 

leaching limits than thin-film carbonated samples (Fig. S12). Results for Pb and Zn meet the 

expectations based on the review of Fernández-Bertos et al. (2004). It was reported in Santos 

et al. (2012c) that Mo leaching increased slightly after direct hot-stage carbonation of BOF 

slag. Cornelis et al. (2008) suggests that Mo leaching can slightly increase, remain constant 

or decrease as the pH lowers, depending on the speciation of Mo. Decreased Mo leaching is 

attributed in that study to the formation of PbMoO4. As CC slag contains more Pb than AOD 

and BOF slags, it is possible that this mechanism explains the observed behavior from slurry 

carbonated samples. 

In the case of Cr, the heavy metal present by far in greatest quantities in the slags 

(Table 1), some samples fall or remain under the limit while others remain or go above 

(leaching from fresh CC slag being higher than from AOD slag). Nevertheless, there appears 

to be some convergence to low leaching values once the sample pH reaches ~10 or lower; 

accordingly, this only occurs for the better carbonated slurry samples. The variability in Cr 

leaching could have its roots in the array of uptake mechanisms described by Fernández-

Bertos et al. (2004). They report the possibility of Cr associating with calcium silicate hydrate 

(CSH) as a silicon substitute at higher pH values; but this mineral phase can undergo 
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solubilisation at lower pH, re-releasing Cr. At lower pH values still, calcite and neoformed 

double metal salts can take up Cr and again reduce leaching. Cornelis et al. (2008) 

geochemically modelled several Cr-containing species that may be responsible for its pH-

dependent behavior, the three of which most likely participate being: Ca2Cr2O5·6H2O (i.e. 

substituted CSH), Cr(OH)3, and PbCrO4. While carbonation-induced reduction of Cr leaching 

appears to be mild, if not debatable, Van Gerven et al. (2005) showed that Cr-containing 

untreated bottom ashes brought to the same lower pH as carbonated ashes, by acidification, 

show much higher Cr leaching, meaning that Cr speciation in carbonated samples at least 

offers a buffer that hinders drastic solubilisation. 

It is also possible to make some useful observations from the leaching results of the nine 

remaining heavy metals that do not pose a threat to exceeding regulatory limits. Positive 

correlations of leaching reduction with carbonation extent can be made for Ba, Cd, Co*, Cu, 

Ni*, Sb* and Se. The starred elements correspond to those for which improvement was 

substantial only in slurry carbonation. Leaching of Ti was generally low compared to the 

regulatory limit, even for the higher outliers. Leaching of V increased by roughly one order 

of magnitude compared to fresh sample values, with greater increase observed from thin-film 

carbonated samples (Fig. S12). Leaching of V is not currently regulated, but if its future 

leaching value is similar to those of other currently regulated metalloids (i.e. 1–2 mg/kg), its 

leaching could become a concern. Still, the risk of V leaching from stainless steel slags 

appears to be milder than from BOF slag, where carbonation induced solubilisation can reach 

upwards of 10 mg/kg (Santos et al., 2012c). 

It should also be noted that aqueous carbonation forms the encapsulating carbonate layer 

previously presented (Fig. 4) that is not observed in direct hot-stage carbonation. This 

passivating layer, though detrimental for carbonation reaction progression, may play an 

important role in limiting heavy metal leaching by reducing exposure of the unreacted or 

unreactive phases in the particle core to the aqueous medium. The good homogeneity of 

slurry carbonation may explain beyond its better CO2 uptake the reason for its generally 

superior leaching performance compared to thin-film carbonation. This can be particularly 

ascribed to the V leaching behavior from thin-film carbonated slag (Fig. S12), where the 

lower pH of the overall sample may exacerbate V leaching from some less carbonated 

particles. 

 

4. Discussion 
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The slags herein tested (freshly produced AOD slag in absence of boron additives and as 

produced CC slag) proved ideal for mineral carbonation as their powdery morphology 

forgoes the need for costly milling (required for EAF and BOF carbonation) and provides 

sufficient surface area to impart high reactivity towards direct aqueous carbonation. The 

stainless steel slags were also verified to capture more CO2 than BOF slag as reported by 

Huijgen et al. (2005) and EAF slag as reported by Baciocchi et al. (2011); it was possible to 

reach 21–24 wt%,CO2 with AOD and CC slags compared to a maximum ~15 wt%,CO2 with 

finely milled BOF and EAF slags. 

It was also made apparent that high temperatures and pressures are not required for 

extensive carbonation of AOD and CC slags, which can have a positive impact on processing 

costs recently reported in literature. Kelly et al. (2011) assumed 35.5 bar, 200 
o
C, and no heat 

recovery, to model a carbonation process based on the data of Huijgen et al. (2005), and 

concluded that the energy penalty is too high. On the contrary, slurry carbonation makes it 

possible to harvest the exothermic heat generated by the carbonation reaction (Santos et al., 

2013), and present results show that 90 °C and 9 bar,CO2 suffice for rapid reaction. Even 

milder conditions can be used to further reduce processing costs, if necessary, with small loss 

of CO2 uptake if well optimized. 

Mineral carbonation conversion was accompanied by significant reduction in basicity, as 

much as two pH units after slurry carbonation. The stabilization of heavy metals leaching was 

also assessed. It was shown that these slags do not pose significant leaching risks compared 

to Belgian (Wallonia) regulatory limits for waste materials re-use, and that carbonation serves 

to further reduce the leaching of most heavy metals, in particular slurry carbonation. The only 

metal that approached limiting values was Cr, which is present in significant quantities in the 

slags and thus warrants observation as to its behavior, although several carbonated samples 

remained below the limit. Durinck et al. (2008) reviewed several methods by which Cr can be 

better stabilized through alterations to the hot-stage molten slag and its cooling trajectory. 

The recovery of Cr, a valuable metal, from stainless steel slags could also circumvent this 

issue, and is being investigated (Adamczyk et al., 2010). 

Slurry carbonation was found to deliver greater mineral carbonation conversion and 

optimal treatment homogeneity, which are required to achieve high levels of CO2 uptake, 

basicity reduction and heavy metal stabilization. However, these features are only required 

when the carbonated product is to be valorized beyond a carbon sink, for example as soil 

conditioner (pH control), as fine aggregate (sand substitute) in construction materials (e.g. 

concrete) or as mineral filler in chemical products (e.g. paints). In this manner, valorization 
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applications can potentially afford the additional processing costs associated with slurry 

carbonation. However, as Zingaretti et al. (2013) correctly suggest, thin-film carbonation may 

be a more feasible route for the utilization of slags as carbon sinks, particularly due to the 

elimination of CO2 separation and compression and of liquid-solid separation, and in the 

reduction of heating and mixing demands. Prolonged treatment times (herein reported as long 

as 7 days under stationary conditions with intermittent de-agglomeration and re-wetting) may 

be reduced if the carbonating paste is more often de-agglomerated (to counter cementitious 

behavior) and re-wetted (to maintain required moisture content), for example with the 

application of a rotary drum as proposed by Zingaretti et al. (2013). In addition, the 

aforementioned valorization options envision direct use of the carbonated slags in 

commercial applications; however industrial symbiosis (Brent et al., 2012) and inter-industry 

solid residue utilization as blended materials (Mäkelä et al., 2012) should also be explored, as 

they can open new valorization routes, enable better energy/exergy efficiencies, and 

potentially diminish material property requirements commonly associated with commercial 

industrial reagents and products. 

The present study also elucidated the mineralogical response of the stainless steel slags 

towards mineral carbonation by applying Rietveld refinement for the quantification of the 

mineral phases in the fresh and carbonated samples. Although the quantification uncertainty 

of this technique for complex mineral samples such as slags does not allow for precise 

measurement of carbonation kinetics, it was possible to qualitatively differentiate mineral 

phases that react more substantially than others over time, to observe noticeable differences 

in reactivity at varying process conditions (T and P), and to discern the preferential formation 

of certain Ca- and Mg-carbonates (mainly calcite, aragonite, magnesian calcite, 

monohydrocalcite, nesquehonite and hydromagnesite) depending on the processing route and 

operating conditions. 

In a recent work of our research group, reported in Bodor et al. (2013), it was assessed if 

the carbonation conversion limitations could be attributable to differences in the 

susceptibility towards mineral carbonation of individual alkaline mineral phases present in 

steel and stainless steel slags. To this end, seven minerals were synthesized by solid-state 

sintering and carbonated individually. The results suggest that mineralogical susceptibility 

towards mineral carbonation is not the only determining factor controlling carbonation 

reactivity and CO2 uptake. Particle morphology, in particular grain size and location of the 

mineral phase components, appears to be equally important, as reactive mineral phases 

dispersed within less reactive phases do not have the same opportunity to react with CO2 as if 
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they were directly exposed to the reactive medium. Such distinctions may also affect basicity 

and pH buffering levels, which can potentially influence carbonation rate and conversion. 

These points can be related to the fact that CC slag clearly carbonated more extensively 

than AOD slag at essentially every processing condition, despite the two slags having very 

similar chemical compositions and sharing essentially the same mineral phases, though in 

differing proportions. Unequal cooling trajectories during slag production may be responsible 

for controlling particle microstructure. In a way this is inopportune, as substantially more 

AOD slag is produced during steelmaking. On the other hand, it suggests that AOD 

mineralogy and particle morphology should be tuned to resemble more closely that of CC 

slag, either via additions to the hot-stage molten slag, or via precise control of the slag 

cooling path (i.e. the quenching rate). Durinck et al. (2008) describe this as ‘slag 

engineering’, by which the links between process parameters, slag microstructure and product 

properties are leveraged to turn secondary materials into tailored resources. 

 

5. Conclusion 

 

The metallurgical industry is in need of novel valorization routes to steer slags away 

from traditional storage in landfills and into valuable applications. At the same time, the 

technological field of mineral carbonation is in need of a process that is economical and 

scalable, to serve as a platform for its dissemination and uptake by several industrial activities 

that can benefit from it but are still skeptical of its merit. The results herein presented are 

promising for the valorization of carbonated AOD and CC stainless steel slags as secondary 

raw materials, or at least for the reduction of disposal costs and environmental impact of 

landfilled slags and their utilization solely as carbon sinks. 
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List of Figures 

 

 
Fig. 1. Thin-film carbonation results: thermogravimetrical curves and carbonation conversion 

values for AOD (a) and CC (b) slags as a function of reaction time; P(CO2) = 0.2 atm, T = 

30 °C, L/S = 25 wt%, 95% relative humidity. 
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Fig. 2. Slurry carbonation results: effect of temperature (a), CO2 partial pressure (b), reaction 

time (c) and solids loading (d) on the carbonation conversion of AOD and CC slags; error 

bars reflect reproducibility data presented in Fig. S6 in the Supplementary Content). 

 

 
Fig. 3. Geochemical modeling of CO2/CaCO3/H2O equilibrium: effects of temperature and 

CO2 partial pressure on total dissolved species and pH. 
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Fig. 4. Fresh and carbonated (120 minutes) slag particle morphology. 
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Fig. 5. Thin-film carbonation results: carbonation conversion of slag mineral phases 

(bredigite (a), cuspidine (b), β-C2S (c), γ-C2S (d), merwinite (e) and periclase (f)) as a 

function of reaction time; P(CO2) = 0.2 atm, T = 30 °C, L/S = 25 wt%, 95% relative 

humidity; error bars represent mean quantification accuracy, based on select replicate 

analyses, of ± 2.3 wt% of the quantified amount. 
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Fig. 6. Slurry carbonation results: carbonation conversion of slag mineral phases (bredigite 

(a), cuspidine (b), β-C2S (c), γ-C2S (d), merwinite (e) and periclase (f)) as a function of 

reaction time; P(CO2) = 6 bar, T = 90 °C, S = 62.5 g/L; error bars represent mean 

quantification accuracy, based on select replicate analyses, of ± 2.3 wt% of the quantified 

amount. 
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Fig. 7. Composition of carbonate mineral phases (normalized to 100 % of carbonate content) 

for thin-film carbonation (a) and slurry carbonation (b) as a function of reaction time; error 

bars represent mean quantification accuracy, based on select replicate analyses, of ± 2.3 wt% 

of the quantified amount. 

 

 
Fig. 8. Basicity of stainless steel slag samples from thin-film carbonation (a) and slurry 

carbonation (b) as a function of CO2 uptake. 
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Fig. 9. Slurry carbonation results: leaching of heavy metals from stainless steel slags as a 

function of pH. Horizontal dashed lines indicate Belgian (Wallonia) regulatory limits; where 

no line is seen, the limit is greater than the y-axis shown. 
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List of Tables 

 

Table 1 

Chemical composition of steel slags determined by XRF and expressed as elements 

(> 0.1 wt%) and oxides, and loss on ignition (LOI) determined by TGA. 

Elements 

(wt%) 
Al Ca Cr Fe Mg Mn S Si Ti 

 

AOD slag 0.74 39.2 0.52 0.17 5.4 0.32 0.24 15.2 0.24  

CC slag 0.57 35.8 3.4 1.1 6.6 0.39 0.25 12.8 0.51  

Oxides 

(wt%) 
Al2O3 CaO Cr2O3 Fe2O3 MgO MnO SO3 SiO2 TiO2 LOI 

AOD slag 1.4 54.8 0.76 0.25 9.0 0.42 0.24 32.5 0.40 0.10 

CC slag 1.1 50.0 5.0 1.6 10.9 0.50 0.63 27.4 0.86 1.5 

 

 

Table 2 

Mineral composition (wt%) of stainless steel slags determined by QXRD with Rietveld 

refinement (three largest values bolded). 

Mineral 
Chemical 

formula 

AOD slag 

wt% 

CC slag 

wt% 

Åkermanite Ca2MgSi2O7 3.3 1.8 

Bredigite Ca7Mg(SiO4)4 18.9 12.4 

Cuspidine Ca4Si2O7F2 13.9 9.1 

β-Dicalcium silicate Ca2SiO4 10.2 3.9 

γ-Dicalcium silicate Ca2SiO4 24.1 38.6 

Enstatite Mg2Si2O6 3.9 9.7 

Fayalite Fe2SiO4 0.8 1.9 

Gehlenite Ca2Al2SiO7 1.1 0.2 

Lime CaO 0.1 0.6 

Magnetite Fe3O4 0.4 2.1 

Merwinite Ca3Mg(SiO4)2 12.7 6.7 

Periclase MgO 7.4 10.7 

Portlandite Ca(OH)2 0.4 1.4 

Quartz SiO2 0.5 0.4 

Wollastonite CaSiO3 2.4 0.4 

Amorphous - nd nd 

Sum  100 100 

nd = not detected, using internal standard (corundum) methodology of Snellings et al. (2010). 

 

 

Table 3 

Heavy metal leaching limits for waste material re-use in Belgium (Wallonia). 

 As Ba Cd Co Cr
2
 Cu Mo 

Limit
1
 (mg/kg) 1.0 N.R. 1.0 1.0 1.0 20 1.5 

 Ni Pb Sb Se Ti V Zn 

Limit
1
 (mg/kg) 2.0 2.0 2.0 N.R. 20 N.R. 9.0 

1
 Regulation: DIN 38414/EN 12457-4/CEN TC 292 (Ministere De La Region Wallonne, 

2001) 
2
 Limits prescribed for Cr(VI), whereas total Cr measured. 

N.R.: not regulated. 
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Table 4 

Thin-film carbonation results: sample moisture (wt%) as a function of reaction time. 

 AOD slag 

wt% 

CC slag 

wt% 

Initial 25.0 25.0 

3 hours 22.1 23.2 

26 hours
1
 17.8 14.1 

26 hours re-wetted 25.9 22.9 

94 hours
2
 17.6 3.8 

94 hours re-wetted 29.3 19.3 

144 hours 19.3 6.7 
1
 Subsequently re-wetted with additional 2/5 of initial moisture content. 

2
 Subsequently re-wetted with additional 3/5 of initial moisture content. 
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