93 research outputs found

    Molecular Mechanisms Involved in Vascular Interactions of the Lyme Disease Pathogen in a Living Host

    Get PDF
    Hematogenous dissemination is important for infection by many bacterial pathogens, but is poorly understood because of the inability to directly observe this process in living hosts at the single cell level. All disseminating pathogens must tether to the host endothelium despite significant shear forces caused by blood flow. However, the molecules that mediate tethering interactions have not been identified for any bacterial pathogen except E. coli, which tethers to host cells via a specialized pillus structure that is not found in many pathogens. Furthermore, the mechanisms underlying tethering have never been examined in living hosts. We recently engineered a fluorescent strain of Borrelia burgdorferi, the Lyme disease pathogen, and visualized its dissemination from the microvasculature of living mice using intravital microscopy. We found that dissemination was a multistage process that included tethering, dragging, stationary adhesion and extravasation. In the study described here, we used quantitative real-time intravital microscopy to investigate the mechanistic features of the vascular interaction stage of B. burgdorferi dissemination. We found that tethering and dragging interactions were mechanistically distinct from stationary adhesion, and constituted the rate-limiting initiation step of microvascular interactions. Surprisingly, initiation was mediated by host Fn and GAGs, and the Fn- and GAG-interacting B. burgdorferi protein BBK32. Initiation was also strongly inhibited by the low molecular weight clinical heparin dalteparin. These findings indicate that the initiation of spirochete microvascular interactions is dependent on host ligands known to interact in vitro with numerous other bacterial pathogens. This conclusion raises the intriguing possibility that fibronectin and GAG interactions might be a general feature of hematogenous dissemination by other pathogens

    Extracellular Matrix in Heart Failure: Role of ADAMTS5 in Proteoglycan Remodeling

    Get PDF
    [Abstract] Background: Remodeling of the extracellular matrix (ECM) is a hallmark of heart failure (HF). Our previous analysis of the secretome of murine cardiac fibroblasts returned ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) as one of the most abundant proteases. ADAMTS5 cleaves chondroitin sulfate proteoglycans such as versican. The contribution of ADAMTS5 and its substrate versican to HF is unknown. Methods: Versican remodeling was assessed in mice lacking the catalytic domain of ADAMTS5 (Adamts5ΔCat). Proteomics was applied to study ECM remodeling in left ventricular samples from patients with HF, with a particular focus on the effects of common medications used for the treatment of HF. Results: Versican and versikine, an ADAMTS-specific versican cleavage product, accumulated in patients with ischemic HF. Versikine was also elevated in a porcine model of cardiac ischemia/reperfusion injury and in murine hearts after angiotensin II infusion. In Adamts5ΔCat mice, angiotensin II infusion resulted in an aggravated versican build-up and hyaluronic acid disarrangement, accompanied by reduced levels of integrin β1, filamin A, and connexin 43. Echocardiographic assessment of Adamts5ΔCat mice revealed a reduced ejection fraction and an impaired global longitudinal strain on angiotensin II infusion. Cardiac hypertrophy and collagen deposition were similar to littermate controls. In a proteomics analysis of a larger cohort of cardiac explants from patients with ischemic HF (n=65), the use of β-blockers was associated with a reduction in ECM deposition, with versican being among the most pronounced changes. Subsequent experiments in cardiac fibroblasts confirmed that β1-adrenergic receptor stimulation increased versican expression. Despite similar clinical characteristics, patients with HF treated with β-blockers had a distinct cardiac ECM profile. Conclusions: Our results in animal models and patients suggest that ADAMTS proteases are critical for versican degradation in the heart and that versican accumulation is associated with impaired cardiac function. A comprehensive characterization of the cardiac ECM in patients with ischemic HF revealed that β-blockers may have a previously unrecognized beneficial effect on cardiac chondroitin sulfate proteoglycan content.Dr Barallobre-Barreiro is a British Heart Foundation Intermediate Fellow (FS/19/33/34328). Drs Mayr and Shah are British Heart Foundation Chair Holders (CH/16/3/32406 and CH/1999001/11735, respectively) and received support from the British Heart Foundation Center for Vascular Regeneration With Edinburgh/Bristol (RM/17/3/33381). Dr Doménech’s work was supported by Project PI16/02049 integrated in the National Plan for Scientific Research, Development and Technological Innovation, 2013–2016, and funded by the ISCIII–General Subdirection of Assessment and Promotion of Research–European Regional Development Fund. Dr Merkely’s work was funded by the National Research, Development and Innovation Fund (NVKP_16-1–2016-0017) and the Thematic Excellence Program of the Ministry for Innovation and Technology (2020-4.1.1.-TKP2020), Hungary. Dr Radovits is supported by the National Research, Development and Innovation Office of Hungary (K134939)British Heart Foundation; FS/19/33/34328British Heart Foundation; CH/16/3/32406British Heart Foundation; CH/1999001/11735British Heart Foundation Center for Vascular Regeneration; RM/17/3/33381Hungría. Ministry for Innovation and Technology; NVKP_16-1–2016-0017Hungría. Ministry for Innovation and Technology; 2020-4.1.1.-TKP2020Hungría. National Research, Development and Innovation Office; K13493

    The role of allochrony in influencing interspecific differences in foraging distribution during the non-breeding season between two congeneric crested penguin species

    Get PDF
    Mechanisms promoting coexistence between closely related species are fundamental for maintaining species diversity. Mechanisms of niche differentiation include allochrony which offsets the peak timing of resource utilisation between species. Many studies focus on spatial and temporal niche partitioning during the breeding season, few have investigated the role allochrony plays in influencing interspecific segregation of foraging distribution and ecology between congeneric species during the non-breeding season. We investigated the non-breeding migrations of Snares (Eudyptes robustus) and Fiordland penguins (Eudyptes pachyrhynchus), closely related species breeding between 100–350 km apart whose migration phenology differs by two months. Using light geolocation tracking, we examined the degree of overlap given the observed allochrony and a hypothetical scenario where the species commence migration simultaneously. We found that Fiordland penguins migrated to the Sub-Antarctic Frontal Zone and Polar Frontal Zone in the austral autumn whereas Snares penguins disperse westwards staying north of the Sub-Tropical Front in the austral winter. Our results suggest that allochrony is likely to be at the root of segregation because the relative profitability of the different water masses that the penguins forage in changes seasonally which results in the two species utilising different areas over their core non-breeding periods. Furthermore, allochrony reduces relatively higher levels of spatiotemporal overlap during the departure and arrival periods, when the close proximity of the two species’ colonies would cause the birds to congregate in similar areas, resulting in high interspecific competition just before the breeding season. Available evidence from other studies suggests that the shift in phenology between these species has arisen from adaptive radiation and phenological matching to the seasonality of local resource availability during the breeding season and reduced competitive overlap over the non-breeding season is likely to be an incidental outcome

    Real-Time High Resolution 3D Imaging of the Lyme Disease Spirochete Adhering to and Escaping from the Vasculature of a Living Host

    Get PDF
    Pathogenic spirochetes are bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme borreliosis. They navigate efficiently through dense extracellular matrix and cross the blood–brain barrier by unknown mechanisms. Due to their slender morphology, spirochetes are difficult to visualize by standard light microscopy, impeding studies of their behavior in situ. We engineered a fluorescent infectious strain of Borrelia burgdorferi, the Lyme disease pathogen, which expressed green fluorescent protein (GFP). Real-time 3D and 4D quantitative analysis of fluorescent spirochete dissemination from the microvasculature of living mice at high resolution revealed that dissemination was a multi-stage process that included transient tethering-type associations, short-term dragging interactions, and stationary adhesion. Stationary adhesions and extravasating spirochetes were most commonly observed at endothelial junctions, and translational motility of spirochetes appeared to play an integral role in transendothelial migration. To our knowledge, this is the first report of high resolution 3D and 4D visualization of dissemination of a bacterial pathogen in a living mammalian host, and provides the first direct insight into spirochete dissemination in vivo

    The impact of regional and neighbourhood deprivation on physical health in Germany: a multilevel study

    Get PDF
    Voigtländer S, Berger U, Razum O. The impact of regional and neighbourhood deprivation on physical health in Germany: a multilevel study. BMC Public Health. 2010;10(1): 403.Background There is increasing evidence that individual health is at least partly determined by neighbourhood and regional factors. Mechanisms, however, remain poorly understood, and evidence from Germany is scant. This study explores whether regional as well as neighbourhood deprivation are associated with physical health and to what extent this association can be explained by specific neighbourhood exposures. Methods Using 2004 data from the German Socio-Economic Panel Study (SOEP) merged with regional and neighbourhood characteristics, we fitted multilevel linear regression models with subjective physical health, as measured by the SF-12, as the dependent variable. The models include regional and neighbourhood proxies of deprivation (i.e. regional unemployment quota, average purchasing power of the street section) as well as specific neighbourhood exposures (i.e. perceived air pollution). Individual characteristics including socioeconomic status and health behaviour have been controlled for. Results This study finds a significant association between area deprivation and physical health which is independent of compositional factors and consistent across different spatial scales. Furthermore the association between neighbourhood deprivation and physical health can be partly explained by specific features of the neighbourhood environment. Among these perceived air pollution shows the strongest association with physical health (-2.4 points for very strong and -1.5 points for strong disturbance by air pollution, standard error (SE) = 0.8 and 0.4, respectively). Beta coefficients for perceived air pollution, perceived noise and the perceived distance to recreational resources do not diminish when including individual health behaviour in the models. Conclusions This study highlights the difference regional and in particular neighbourhood deprivation make to the physical health of individuals in Germany. The results support the argument that specific neighbourhood exposures serve as an intermediary step between deprivation and health. As people with a low socioeconomic status were more likely to be exposed to unfavourable neighbourhood characteristics these conditions plausibly contribute towards generating health inequalities

    Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A

    Get PDF
    Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10−9, odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizure

    IP-10-Mediated T Cell Homing Promotes Cerebral Inflammation over Splenic Immunity to Malaria Infection

    Get PDF
    Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis

    Genome-Wide Scan on Total Serum IgE Levels Identifies FCER1A as Novel Susceptibility Locus

    Get PDF
    High levels of serum IgE are considered markers of parasite and helminth exposure. In addition, they are associated with allergic disorders, play a key role in anti-tumoral defence, and are crucial mediators of autoimmune diseases. Total IgE is a strongly heritable trait. In a genome-wide association study (GWAS), we tested 353,569 SNPs for association with serum IgE levels in 1,530 individuals from the population-based KORA S3/F3 study. Replication was performed in four independent population-based study samples (total n = 9,769 individuals). Functional variants in the gene encoding the alpha chain of the high affinity receptor for IgE (FCER1A) on chromosome 1q23 (rs2251746 and rs2427837) were strongly associated with total IgE levels in all cohorts with P values of 1.85×10−20 and 7.08×10−19 in a combined analysis, and in a post-hoc analysis showed additional associations with allergic sensitization (P = 7.78×10−4 and P = 1.95×10−3). The “top” SNP significantly influenced the cell surface expression of FCER1A on basophils, and genome-wide expression profiles indicated an interesting novel regulatory mechanism of FCER1A expression via GATA-2. Polymorphisms within the RAD50 gene on chromosome 5q31 were consistently associated with IgE levels (P values 6.28×10−7−4.46×10−8) and increased the risk for atopic eczema and asthma. Furthermore, STAT6 was confirmed as susceptibility locus modulating IgE levels. In this first GWAS on total IgE FCER1A was identified and replicated as new susceptibility locus at which common genetic variation influences serum IgE levels. In addition, variants within the RAD50 gene might represent additional factors within cytokine gene cluster on chromosome 5q31, emphasizing the need for further investigations in this intriguing region. Our data furthermore confirm association of STAT6 variation with serum IgE levels

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    © 2024 The Authors. Journal of Extracellular Vesicles, published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.Peer reviewe
    corecore