77 research outputs found

    First exploration of the runaway greenhouse transition with a GCM

    Full text link
    Even if their detection is for now challenging, observation of small terrestrial planets will be easier in a near future thanks to continuous improvements of detection and characterisation instruments. In this quest, climate modeling is a key step to understand their characteristics, atmospheric composition and possible history. If a surface water reservoir is present on such a terrestrial planet, an increase in insolation may lead to a dramatic positive feedback induced by water evaporation: the runaway greenhouse. The resulting rise of global surface temperature leads to the evaporation of the entire water reservoir, separating two very different population of planets: 1) temperate planets with a surface water ocean and 2) hot planets with a puffed atmosphere dominated by water vapor. In this work we use a 3D General Circulation Model (GCM), the Generic-PCM, to study the runaway greenhouse transition, linking temperate and post-runaway states. Our simulations are made of two steps. First, assuming initially a liquid surface ocean, an evaporation phase which enriches the atmosphere in water vapor. Second, when the ocean is considered entirely evaporated, a dry transition phase for which the surface temperature increases dramatically. Finally, it converges on a hot and stable post-runaway state. By describing in detail the evolution of the climate during these two steps, we show a rapid transition of the cloud coverage and of the wind circulation from the troposphere to the stratosphere. By comparing our result to previous studies using 1D models, we discuss the effect of intrinsically 3D processes such as the global dynamics and the clouds, keys to understand the runaway greenhouse. We also explore the potential reversibility of the runaway greenhouse, limited by its radiative unbalance.Comment: 15 pages, 17 figures, accepted for publication in A&

    Unbiasing the density of TTV-characterised sub-Neptunes: Update of the mass-radius relationship of 34 Kepler planets

    Full text link
    Transit Timing Variations (TTVs) can provide useful information on compact multi-planetary systems observed by transits, by putting constraints on the masses and eccentricities of the observed planets. This is especially helpful when the host star is not bright enough for radial velocity follow-up. However, in the past decades, numerous works have shown that TTV-characterised planets tend to have a lower densities than RV-characterised planets. Re-analysing 34 Kepler planets in the super-Earth to sub-Neptunes range using the RIVERS approach, we show that at least part of these discrepancies was due to the way transit timings were extracted from the light curve, which had a tendency to under-estimate the TTV amplitudes. We recover robust mass estimates (i.e. low prior dependency) for 23 of the planets. We compare these planets the RV-characterised population. A large fraction of these previously had a surprisingly low density now occupy a place of the mass-radius diagram much closer to the bulk of the known planets, although a slight shift toward lower densities remains, which could indicate that the compact multi-planetary systems characterised by TTVs are indeed composed of planets which are different from the bulk of the RV-characterised population. These results are especially important for obtaining an unbiased view of the compact multi-planetary systems detected by Kepler, TESS, and the upcoming PLATO mission

    Mineral dust increases the habitability of terrestrial planets but confounds biomarker detection

    Get PDF
    Identification of habitable planets beyond our solar system is a key goal of current and future space missions. Yet habitability depends not only on the stellar irradiance, but equally on constituent parts of the planetary atmosphere. Here we show, for the first time, that radiatively active mineral dust will have a significant impact on the habitability of Earth-like exoplanets. On tidally-locked planets, dust cools the day-side and warms the night-side, significantly widening the habitable zone. Independent of orbital configuration, we suggest that airborne dust can postpone planetary water loss at the inner edge of the habitable zone, through a feedback involving decreasing ocean coverage and increased dust loading. The inclusion of dust significantly obscures key biomarker gases (e.g. ozone, methane) in simulated transmission spectra, implying an important influence on the interpretation of observations.We demonstrate that future observational and theoretical studies of terrestrial exoplanets must consider the effect of dust

    TRAPPIST-1: Global results of the Spitzer Exploration Science Program Red Worlds

    Get PDF
    With more than 1000 hours of observation from Feb 2016 to Oct 2019, the Spitzer Exploration Program Red Worlds (ID: 13067, 13175 and 14223) exclusively targeted TRAPPIST-1, a nearby (12pc) ultracool dwarf star orbited by seven transiting Earth-sized planets, all well-suited for a detailed atmospheric characterization with the upcoming JWST. In this paper, we present the global results of the project. We analyzed 88 new transits and combined them with 100 previously analyzed transits, for a total of 188 transits observed at 3.6 or 4.5 μ\mum. We also analyzed 29 occultations (secondary eclipses) of planet b and eight occultations of planet c observed at 4.5 μ\mum to constrain the brightness temperatures of their daysides. We identify several orphan transit-like structures in our Spitzer photometry, but all of them are of low significance. We do not confirm any new transiting planets. We estimate for TRAPPIST-1 transit depth measurements mean noise floors of \sim35 and 25 ppm in channels 1 and 2 of Spitzer/IRAC, respectively. most of this noise floor is of instrumental origins and due to the large inter-pixel inhomogeneity of IRAC InSb arrays, and that the much better interpixel homogeneity of JWST instruments should result in noise floors as low as 10ppm, which is low enough to enable the atmospheric characterization of the planets by transit transmission spectroscopy. We construct updated broadband transmission spectra for all seven planets which show consistent transit depths between the two Spitzer channels. We identify and model five distinct high energy flares in the whole dataset, and discuss our results in the context of habitability. Finally, we fail to detect occultation signals of planets b and c at 4.5 μ\mum, and can only set 3σ\sigma upper limits on their dayside brightness temperatures (611K for b 586K for c)

    TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI): Motivations and protocol version 1.0

    Get PDF
    This is the final version. Available from European Geosciences Union via the DOI in this record. ExoCAM (Wolf and Toon, 2015) is available on GitHub: https://github.com/storyofthewolf/ExoCAM (last access: 8 February 2020). The Met Office Unified Model is available for use under license; see http://www.metoffice.gov.uk/research/modelling-systems/unified-model (Met Office, 2020, last access: 8 February 2020). ROCKE-3D is public domain software and available for download for free from https://simplex.giss.nasa.gov/gcm/ROCKE-3D/ (last access: 8 February 2020, NASA Goddard Institute for Space Studies, 2020a). Annual tutorials for new users take place annually, whose recordings are freely available online at https://www.youtube.com/user/NASAGISStv/playlists?view=50&sort=dd&shelf_id=15 (last access: 8 February 2020b, NASA Goddard Institute for Space Studies, 2020b). LMDG is obtainable upon request from Martin Turbet ([email protected]) and François Forget ([email protected]).Upcoming telescopes such as the James Webb Space Telescope (JWST), the European Extremely Large Telescope (E-ELT), the Thirty Meter Telescope (TMT) or the Giant Magellan Telescope (GMT) may soon be able to characterize, through transmission, emission or reflection spectroscopy, the atmospheres of rocky exoplanets orbiting nearby M dwarfs. One of the most promising candidates is the late M-dwarf system TRAPPIST-1, which has seven known transiting planets for which transit timing variation (TTV) measurements suggest that they are terrestrial in nature, with a possible enrichment in volatiles. Among these seven planets, TRAPPIST-1e seems to be the most promising candidate to have habitable surface conditions, receiving ~ 66 % of the Earth's incident radiation and thus needing only modest greenhouse gas inventories to raise surface temperatures to allow surface liquid water to exist. TRAPPIST-1e is, therefore, one of the prime targets for the JWST atmospheric characterization. In this context, the modeling of its potential atmosphere is an essential step prior to observation. Global climate models (GCMs) offer the most detailed way to simulate planetary atmospheres. However, intrinsic differences exist between GCMs which can lead to different climate prediction and thus observability of gas and/or cloud features in transmission and thermal emission spectra. Such differences should preferably be known prior to observations. In this paper we present a protocol to intercompare planetary GCMs. Four testing cases are considered for TRAPPIST-1e, but the methodology is applicable to other rocky exoplanets in the habitable zone. The four test cases included two land planets composed of modern-Earth and pure-CO2 atmospheres and two aqua planets with the same atmospheric compositions. Currently, there are four participating models (LMDG, ROCKE-3D, ExoCAM, UM); however, this protocol is intended to let other teams participate as well.NASA Planetary Science Division's Internal Scientist Funding ModelEuropean Union’s Horizon 2020NASA Astrobiology Progra

    The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres

    Full text link
    We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize their atmospheric structure, composition, and circulation, from gas giants to rocky planets. However, exoplanet atmospheric models capable of interpreting the upcoming observations are often limited by insufficiencies in the laboratory and theoretical data that serve as critical inputs to atmospheric physical and chemical tools. Here we provide an up-to-date and condensed description of areas where laboratory and/or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry, building off a larger 2016 white paper, and endorsed by the NAS Exoplanet Science Strategy report. Now is the ideal time for progress in these areas, but this progress requires better access to, understanding of, and training in the production of spectroscopic data as well as a better insight into chemical reaction kinetics both thermal and radiation-induced at a broad range of temperatures. Given that most published efforts have emphasized relatively Earth-like conditions, we can expect significant and enlightening discoveries as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape

    Refining the transit-timing and photometric analysis of TRAPPIST-1: Masses, Radii, densities, dynamics, and ephemerides

    Get PDF
    We have collected transit times for the TRAPPIST-1 system with the Spitzer Space Telescope over four years. We add to these ground-based, HST and K2 transit time measurements, and revisit an N-body dynamical analysis of the seven-planet system using our complete set of times from which we refine the mass ratios of the planets to the star. We next carry out a photodynamical analysis of the Spitzer light curves to derive the density of the host star and the planet densities. We find that all seven planets' densities may be described with a single rocky mass-radius relation which is depleted in iron relative to Earth, with Fe 21 wt% versus 32 wt% for Earth, and otherwise Earth-like in composition. Alternatively, the planets may have an Earth-like composition, but enhanced in light elements, such as a surface water layer or a core-free structure with oxidized iron in the mantle. We measure planet masses to a precision of 3-5%, equivalent to a radial-velocity (RV) precision of 2.5 cm/sec, or two orders of magnitude more precise than current RV capabilities. We find the eccentricities of the planets are very small; the orbits are extremely coplanar; and the system is stable on 10 Myr timescales. We find evidence of infrequent timing outliers which we cannot explain with an eighth planet; we instead account for the outliers using a robust likelihood function. We forecast JWST timing observations, and speculate on possible implications of the planet densities for the formation, migration and evolution of the planet system

    Demarcating circulation regimes of synchronously rotating terrestrial planets within the habitable zone

    Get PDF
    We investigate the atmospheric dynamics of terrestrial planets in synchronous rotation within the habitable zone of low-mass stars using the Community Atmosphere Model (CAM). The surface temperature contrast between day and night hemispheres decreases with an increase in incident stellar flux, which is opposite the trend seen on gas giants. We define three dynamical regimes in terms of the equatorial Rossby deformation radius and the Rhines length. The slow rotation regime has a mean zonal circulation that spans from day to night side, with both the Rossby deformation radius and the Rhines length exceeding planetary radius, which occurs for planets around stars with effective temperatures of 3300 K to 4500 K (rotation period > 20 days). Rapid rotators have a mean zonal circulation that partially spans a hemisphere and with banded cloud formation beneath the substellar point, with the Rossby deformation radius is less than planetary radius, which occurs for planets orbiting stars with effective temperatures of less than 3000 K (rotation period < 5 days). In between is the Rhines rotation regime, which retains a thermally-direct circulation from day to night side but also features midlatitude turbulence-driven zonal jets. Rhines rotators occur for planets around stars in the range of 3000 K to 3300 K (rotation period ∼ 5 to 20 days), where the Rhines length is greater than planetary radius but the Rossby deformation radius is less than planetary radius. The dynamical state can be observationally inferred from comparing the morphology of the thermal emission phase curves of synchronously rotating planets

    A seven-planet resonant chain in TRAPPIST-1

    Get PDF
    The TRAPPIST-1 system is the first transiting planet system found orbiting an ultra-cool dwarf star1. At least seven planets similar to Earth in radius were previously found to transit this host star2. Subsequently, TRAPPIST-1 was observed as part of the K2 mission and, with these new data, we report the measurement of an 18.77 d orbital period for the outermost transiting planet, TRAPPIST-1h, which was unconstrained until now. This value matches our theoretical expectations based on Laplace relations3 and places TRAPPIST-1h as the seventh member of a complex chain, with three-body resonances linking every member. We find that TRAPPIST-1h has a radius of 0.727 R⊕ and an equilibrium temperature of 169 K. We have also measured the rotational period of the star at 3.3 d and detected a number of flares consistent with a low-activity, middle-aged, late M dwarf
    corecore