373 research outputs found

    The Promoter of the Cereal VERNALIZATION1 Gene Is Sufficient for Transcriptional Induction by Prolonged Cold

    Get PDF
    The VERNALIZATION1 (VRN1) gene of temperate cereals is transcriptionally activated by prolonged cold during winter (vernalization) to promote flowering. To investigate the mechanisms controlling induction of VRN1 by prolonged cold, different regions of the VRN1 gene were fused to the GREEN FLUORESCENT PROTEIN (GFP) reporter and expression of the resulting gene constructs was assayed in transgenic barley (Hordeum vulgare). A 2 kb segment of the promoter of VRN1 was sufficient for GFP expression in the leaves and shoot apex of transgenic barley plants. Fluorescence increased at the shoot apex prior to inflorescence initiation and was subsequently maintained in the developing inflorescence. The promoter was also sufficient for low-temperature induction of GFP expression. A naturally occurring insertion in the proximal promoter, which is associated with elevated VRN1 expression and early flowering in some spring wheats, did not abolish induction of VRN1 transcription by prolonged cold, however. A translational fusion of the promoter and transcribed regions of VRN1 to GFP, VRN1::GFP, was localised to nuclei of cells at the shoot apex of transgenic barley plants. The distribution of VRN1::GFP at the shoot apex was similar to the expression pattern of the VRN1 promoter-GFP reporter gene. Fluorescence from the VRN1::GFP fusion protein increased in the developing leaves after prolonged cold treatment. These observations suggest that the promoter of VRN1 is targeted by mechanisms that trigger vernalization-induced flowering in economically important temperate cereal crops

    Genetic variation in the flowering and yield formation of timothy (Phleum pratense L.) accessions after different photoperiod and vernalization treatments

    Get PDF
    Timothy is a perennial forage grass grown commonly in Boreal regions. This study explored the effect of vernalization and photoperiod (PP) on flowering and growth characteristics and how this related to changes in expression of three flowering related genes in accessions from different geographic origin. Large variation was found in accessions in their vernalization and PP responses. In southern accessions vernalization response or requirement was not observed, the heading date remained unchanged, and plants flowered without vernalization. On the contrary, northern types had obligatory requirement for vernalization and long PP, but the tiller elongation did not require vernalization at 16-h PP. Longer vernalization or PP treatments reduced the genotypical differences in flowering. Moreover, the vernalization saturation progressed stepwise from main tiller to lateral tillers, and this process was more synchronized in southern accessions. The expression of PpVRN1 was associated with vernalization while PpVRN3 accumulated at long PP. A crucial role for PpVRN3 in the transition to flowering was supported as in southern accession the transcript accumulated in non-vernalized plants after transfer to 16-h PP, and the apices transformed to generative stage. Differences in vernalization requirements were associated with variation in expression levels of PpVRN1 and PpVRN3, with higher expression levels in southern type. Most divergent transcript accumulation of PpMADS10 was found under different vernalization conditions. These differences between accessions can be translated into agronomic traits, such as the tiller composition of canopy, which affects the forage yield. The southern types, with minimal vernalization response, have fast re-growth ability and rapidly decreasing nutritive value, whereas northern types grow slowly and have better quality. This information can be utilized in breeding for new cultivars for longer growing seasons at high latitudes.Peer reviewe

    Role of adiponectin and inflammation in insulin resistance of Mc3r and Mc4r knockout mice

    Get PDF
    Objective: To investigate the involvement of hypoadiponectinemia and inflammation in coupling obesity to insulin resistance in melanocortin-3 receptor and melanocortin-4 receptor knockout (KO) mice (Mc3/4rKO). Research Methods and Procedures: Sera and tissue were collected from 6-month-old Mc3rKO, Mc4rKO, and wild-type C57BL6J litter mates maintained on low-fat diet or exposed to high-fat diet (HFD) for 1 or 3 months. Inflammation was assessed by both real-time polymerase chain reaction analysis of macrophage-specific gene expression and immunohistochemistry. Results: Mc4rKO exhibited hypoadiponectinemia, exacerbated by HFD and obesity, previously reported in murine models of obesity. Mc4r deficiency was also associated with high levels of macrophage infiltration of adipose tissue, again exacerbated by HFD. In contrast, Mc3rKO exhibited normal serum adiponectin levels, irrespective of diet or obesity, and a delayed inflammatory response to HFD relative to Mc4rKO. Discussion: Our findings suggest that severe insulin resistance of Mc4rKO fed a HFD, as reported in other models of obesity such as leptin-deficient (Lep ob/Lepob) and KK-Ay mice, is linked to reduced serum adiponectin and high levels of inflammation in adipose tissue. Conversely, maintenance of normal serum adiponectin may be a factor in the relatively mild insulin-resistant phenotype of severely obese Mc3rKO. Mc3rKO are, thus, a unique mouse model where obesity is not associated with reduced serum adiponectin levels. A delay in macrophage infiltration of adipose tissue of Mc3rKO during exposure to HFD may also be a factor contributing to the mild insulin resistance in this model. Copyright © 2007 NAASO

    New alleles of the wheat domestication gene Q reveal multiple roles in growth and reproductive development

    Get PDF
    The advantages of free threshing in wheat led to the selection of the domesticated Q allele, which is now present in almost all modern wheat varieties. Q and the pre-domestication allele, q, encode an AP2 transcription factor, with the domesticated allele conferring a free-threshing character and a subcompact (i.e. partially compact) inflorescence (spike). We demonstrate that mutations in the miR172 binding site of the Q gene are sufficient to increase transcript levels via a reduction in miRNA-dependent degradation, consistent with the conclusion that a single nucleotide polymorphism in the miRNA binding site of Q relative to q was essential in defining the modern Q allele. We describe novel gain- and loss-of-function alleles of Q and use these to define new roles for this gene in spike development. Q is required for the suppression of ‘sham ramification’, and increased Q expression can lead to the formation of ectopic florets and spikelets (specialized inflorescence branches that bear florets and grains), resulting in a deviation from the canonical spike and spikelet structures of domesticated wheat.This work was supported by an Australian National University (ANU) University Research Scholarship and a Commonwealth Scientific and Industrial Research Organisation (CSIRO) OCE PhD Top-up Scholarshi

    Characterization of the maintained vegetative phase deletions from diploid wheat and their effect on VRN2 and FT transcript levels

    Get PDF
    Allelic differences at the VRN1 (AP1/CAL/FRU), VRN2 (ZCCT) and VRN3 (FT) vernalization genes affect flowering time in wheat. The two maintained vegetative phase (mvp) mutants from Triticummonococcum L., previously reported as carrying a single gene (VRN1) deletion, are incapable of flowering. In this study, we show that both mvp lines have larger deletions that include the genes AGLG1, CYS, PHYC, VRN1 and possibly others. The original mvp deletions were generated in lines that lack the VRN2 gene. Therefore, to study the effect of the mvp deletions on the regulation of VRN2 we generated populations segregating for both genes simultaneously. The two mvp deletions co-segregated with the non-flowering phenotype, but surprisingly, the lines homozygous for the mvp mutations showed reduced transcript levels of both VRN2 and FT relative to the wild type. The VRN1 deletion is an unlikely cause of the down-regulation of VRN2 since VRN2 transcript levels are higher in the fall, before VRN1 is expressed, and are down-regulated by VRN1. Since both VRN2 and FT are regulated by light and photoperiod, their down-regulation in the mvp mutants might be related to the deletion of the PHYC photoreceptor. However, alternative hypotheses including combinations of other genes deleted in the mvp mutants cannot be ruled out. Until the specific gene(s) responsible for the down-regulation of VRN2 and FT and the non-flowering phenotype are precisely identified, it is premature to use these results to postulate alternative flowering models

    Transcriptome Analysis of the Vernalization Response in Barley (Hordeum vulgare) Seedlings

    Get PDF
    Temperate cereals, such as wheat (Triticum spp.) and barley (Hordeum vulgare), respond to prolonged cold by becoming more tolerant of freezing (cold acclimation) and by becoming competent to flower (vernalization). These responses occur concomitantly during winter, but vernalization continues to influence development during spring. Previous studies identified VERNALIZATION1 (VRN1) as a master regulator of the vernalization response in cereals. The extent to which other genes contribute to this process is unclear. In this study the Barley1 Affymetrix chip was used to assay gene expression in barley seedlings during short or prolonged cold treatment. Gene expression was also assayed in the leaves of plants after prolonged cold treatment, in order to identify genes that show lasting responses to prolonged cold, which might contribute to vernalization-induced flowering. Many genes showed altered expression in response to short or prolonged cold treatment, but these responses differed markedly. A limited number of genes showed lasting responses to prolonged cold treatment. These include genes known to be regulated by vernalization, such as VRN1 and ODDSOC2, and also contigs encoding a calcium binding protein, 23-KD jasmonate induced proteins, an RNase S-like protein, a PR17d secretory protein and a serine acetyltransferase. Some contigs that were up-regulated by short term cold also showed lasting changes in expression after prolonged cold treatment. These include COLD REGULATED 14B (COR14B) and the barley homologue of WHEAT COLD SPECIFIC 19 (WSC19), which were expressed at elevated levels after prolonged cold. Conversely, two C-REPEAT BINDING FACTOR (CBF) genes showed reduced expression after prolonged cold. Overall, these data show that a limited number of barley genes exhibit lasting changes in expression after prolonged cold treatment, highlighting the central role of VRN1 in the vernalization response in cereals

    Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days

    Get PDF
    The response to vernalization and the expression of genes associated with responses to vernalization (VRNH1, VRNH2, and VRNH3) and photoperiod (PPDH1 and PPDH2) were analysed in four barley (Hordeum vulgare L.) lines: ‘Alexis’ (spring), ‘Plaisant’ (winter), SBCC058, and SBCC106 (Spanish inbred lines), grown under conditions of vernalization and short days (VSD) or no vernalization and long days (NVLD). The four genotypes differ in VRNH1. Their growth habits and responses to vernalization correlated with the level of expression of VRNH1 and the length of intron 1. ‘Alexis’ and ‘Plaisant’ behaved as expected. SBCC058 and SBCC106 showed an intermediate growth habit and flowered relatively late in the absence of vernalization. VRNH1 expression was induced by cold for all genotypes. Under VSD, VRNH1 expression was detected in the SBCC genotypes later than in ‘Alexis’ but earlier than in ‘Plaisant’. VRNH2 was repressed under short days while VRNH1 expression increased in parallel. VRNH3 was detected only in ‘Alexis’ under NVLD, whereas it was not expressed in plants with the active allele of VRNH2 (SBCC058 and ‘Plaisant’). Under VSD, PPDH2 was expressed in ‘Alexis’, SBCC058, and SBCC106, but it was only expressed weakly in ‘Alexis’ under NVLD. Further analysis of PPDH2 expression in two barley doubled haploid populations revealed that, under long days, HvFT3 and VRNH2 expression levels were related inversely. The timing of VRNH2 expression under a long photoperiod suggests that this gene might be involved in repression of PPDH2 and, indirectly, in the regulation of flowering time through an interaction with the day-length pathway

    Rapid development of non-alcoholic steatohepatitis in Psammomys obesus (Israeli sand rat)

    Get PDF
    Background and Aims: A major impediment to establishing new treatments for non-alcoholic steatohepatitis is the lack of suitable animal models that accurately mimic the biochemical and metabolic characteristics of the disease. The aim of this study was to explore a unique polygenic animal model of metabolic disease as a model of non-alcoholic steatohepatitis by determining the effects of 2% dietary cholesterol supplementation on metabolic and liver endpoints in Psammomys obesus (Israeli sand rat). Methods: P. obesus were provided ad libitum access to either a standard rodent diet (20% kcal/fat) or a standard rodent diet supplemented with 2% cholesterol (w/w) for 4 weeks. Histological sections of liver from animals on both diets were examined for key features of non-alcoholic steatohepatitis. The expression levels of key genes involved in hepatic lipid metabolism were measured by real-time PCR. Results: P. obesus fed a cholesterol-supplemented diet exhibited profound hepatomegaly and steatosis, and higher plasma transaminase levels. Histological analysis identified extensive steatosis, inflammation, hepatocyte injury and fibrosis. Hepatic gene expression profiling revealed decreased expression of genes involved in delivery and uptake of lipids, and fatty acid and triglyceride synthesis, and increased expression of genes involved in very low density lipoprotein cholesterol synthesis, triglyceride and cholesterol export. Conclusions: P. obesus rapidly develop non-alcoholic steatohepatitis when fed a cholesterol-supplemented diet that appears to be histologically and mechanistically similar to patients. © 2014 Spolding et al

    Identification of genomic regions determining the phenological development leading to floral transition in wheat (Triticum aestivum L.)

    Get PDF
    Autumn-seeded winter cereals acquire tolerance to freezing temperatures and become vernalized by exposure to low temperature (LT). The level of accumulated LT tolerance depends on the cold acclimation rate and factors controlling timing of floral transition at the shoot apical meristem. In this study, genomic loci controlling the floral transition time were mapped in a winter wheat (T. aestivum L.) doubled haploid (DH) mapping population segregating for LT tolerance and rate of phenological development. The final leaf number (FLN), days to FLN, and days to anthesis were determined for 142 DH lines grown with and without vernalization in controlled environments. Analysis of trait data by composite interval mapping (CIM) identified 11 genomic regions that carried quantitative trait loci (QTLs) for the developmental traits studied. CIM analysis showed that the time for floral transition in both vernalized and non-vernalized plants was controlled by common QTL regions on chromosomes 1B, 2A, 2B, 6A and 7A. A QTL identified on chromosome 4A influenced floral transition time only in vernalized plants. Alleles of the LT-tolerant parent, Norstar, delayed floral transition at all QTLs except at the 2A locus. Some of the QTL alleles delaying floral transition also increased the length of vegetative growth and delayed flowering time. The genes underlying the QTLs identified in this study encode factors involved in regional adaptation of cold hardy winter wheat
    corecore