144 research outputs found

    Effect of obesity and metabolic syndrome on plasma oxysterols and fatty acids in human

    Get PDF
    BACKGROUND: Obesity and the related entity metabolic syndrome are characterized by altered lipid metabolism and associated with increased morbidity risk for cardiovascular disease and cancer. Oxysterols belong to a large family of cholesterol-derived molecules known to play crucial role in many signaling pathways underlying several diseases. Little is known on the potential effect of obesity and metabolic syndrome on oxysterols in human. OBJECTIVES: In this work, we questioned whether circulating oxysterols might be significantly altered in obese patients and in patients with metabolic syndrome. We also tested the potential correlation between circulating oxysterols and fatty acids. METHODS: 60 obese patients and 75 patients with metabolic syndrome were enrolled in the study along with 210 age- and sex-matched healthy subjects, used as control group. Plasma oxysterols were analyzed by isotope dilution GC/MS, and plasma fatty acids profiling was assessed by gas chromatography coupled with flame ionization detection. RESULTS: We found considerable differences in oxysterols profiling in the two disease groups that were gender-related. Compared to controls, males showed significant differences only in 4α- and 4β-hydroxycholesterol levels in obese and metabolic syndrome patients. In contrast, females showed consistent differences in 7-oxocholesterol, 4α-hydroxycholesterol, 25-hydroxycholesterol and triol. Concerning fatty acids, we found minor differences in the levels of these variables in males of the three groups. Significant changes were observed in plasma fatty acid profile of female patients with obesity or metabolic syndrome. We found significant correlations between various oxysterols and fatty acids. In particular, 4β-hydroxycholesterol, which is reduced in obesity and metabolic syndrome, correlated with a number of saturated and mono-unsaturated fatty acids that are end-products of de novo lipogenesis. CONCLUSIONS: Our data provide the first evidence that obesity and metabolic syndrome are associated with major, gender-specific, changes in circulating oxysterols and fatty acids. These findings suggest a metabolic link between oxysterols and fatty acids, and that oxysterols may contribute to the epidemic diseases associated with obesity and metabolic syndrome in female

    Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals.

    Get PDF
    The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function

    CsA can induce DNA double-strand breaks: implications for BMT regimens particularly for individuals with defective DNA repair

    Get PDF
    Several human disorders mutated in core components of the major DNA double-strand break (DSB) repair pathway, non-homologous end joining (NHEJ), have been described. Cell lines from these patients are characterized by sensitivity to DSB-inducing agents. DNA ligase IV syndrome (LIG4) patients specifically, for unknown reasons, respond particularly badly following treatment for malignancy or BMT. We report the first systematic evaluation of the response of LIG4 syndrome to compounds routinely employed for BMT conditioning. We found human pre-B lymphocytes, a key target population for BMT conditioning, when deficient for DNA ligase IV, unexpectedly exhibit significant sensitivity to CsA the principal prophylaxis for GVHD. Furthermore, we found that CsA treatment alone or in combination with BU and fludarabine resulted in increased levels of DSBs specifically in LIG4 syndrome cells compared to wild-type or Artemis-deficient cells. Our study shows that CsA can induce DSBs and that LIG4 syndrome patient's fail to adequately repair this damage. These DSBs likely arise as a consequence of DNA replication in the presence of CsA. This work has implications for BMT and GVHD management in general and specifically for LIG4 syndrome

    Exposure considerations in human safety assessment: Report from an EPAA Partners’ Forum

    Get PDF
    Understanding and estimating the exposure to a substance is one of the fundamental requirements for safe manufacture and use. Many approaches are taken to determine exposure to substances, mainly driven by potential use and regulatory need. There are many opportunities to improve and optimise the use of exposure information for chemical safety. The European Partnership for Alternative Approaches to Animal Testing (EPAA) therefore convened a Partners’ Forum (PF) to explore exposure considerations in human safety assessment of industrial products to agree key conclusions for the regulatory acceptance of exposure assessment approaches; and priority areas for further research investment. The PF recognised the widescale use of exposure information across industrial sectors with the possibilities creating synergies between different sectors. Further, the PF acknowledged that the EPAA could make a significant contribution to promote the use of exposure data in human safety assessment, with an aim to address specific regulatory needs. To achieve this, research needs as well as synergies and areas for potential collaboration across sectors were identified

    Genome-wide association study of kidney function decline in individuals of European descent.

    Get PDF
    Genome-wide association studies (GWASs) have identified multiple loci associated with cross-sectional eGFR, but a systematic genetic analysis of kidney function decline over time is missing. Here we conducted a GWAS meta-analysis among 63,558 participants of European descent, initially from 16 cohorts with serial kidney function measurements within the CKDGen Consortium, followed by independent replication among additional participants from 13 cohorts. In stage 1 GWAS meta-analysis, single-nucleotide polymorphisms (SNPs) at MEOX2, GALNT11, IL1RAP, NPPA, HPCAL1, and CDH23 showed the strongest associations for at least one trait, in addition to the known UMOD locus, which showed genome-wide significance with an annual change in eGFR. In stage 2 meta-analysis, the significant association at UMOD was replicated. Associations at GALNT11 with Rapid Decline (annual eGFR decline of 3 ml/min per 1.73 m(2) or more), and CDH23 with eGFR change among those with CKD showed significant suggestive evidence of replication. Combined stage 1 and 2 meta-analyses showed significance for UMOD, GALNT11, and CDH23. Morpholino knockdowns of galnt11 and cdh23 in zebrafish embryos each had signs of severe edema 72 h after gentamicin treatment compared with controls, but no gross morphological renal abnormalities before gentamicin administration. Thus, our results suggest a role in the deterioration of kidney function for the loci GALNT11 and CDH23, and show that the UMOD locus is significantly associated with kidney function decline.Kidney International advance online publication, 10 December 2014; doi:10.1038/ki.2014.361

    ccdc80-l1 Is Involved in Axon Pathfinding of Zebrafish Motoneurons

    Get PDF
    Axon pathfinding is a subfield of neural development by which neurons send out axons to reach the correct targets. In particular, motoneurons extend their axons toward skeletal muscles, leading to spontaneous motor activity. In this study, we identified the zebrafish Ccdc80 and Ccdc80-like1 (Ccdc80-l1) proteins in silico on the basis of their high aminoacidic sequence identity with the human CCDC80 (Coiled-Coil Domain Containing 80). We focused on ccdc80-l1 gene that is expressed in nervous and non-nervous tissues, in particular in territories correlated with axonal migration, such as adaxial cells and muscle pioneers. Loss of ccdc80-l1 in zebrafish embryos induced motility issues, although somitogenesis and myogenesis were not impaired. Our results strongly suggest that ccdc80-l1 is involved in axon guidance of primary and secondary motoneurons populations, but not in their proper formation. ccdc80-l1 has a differential role as regards the development of ventral and dorsal motoneurons, and this is consistent with the asymmetric distribution of the transcript. The axonal migration defects observed in ccdc80-l1 loss-of-function embryos are similar to the phenotype of several mutants with altered Hedgehog activity. Indeed, we reported that ccdc80-l1 expression is positively regulated by the Hedgehog pathway in adaxial cells and muscle pioneers. These findings strongly indicate ccdc80-l1 as a down-stream effector of the Hedgehog pathway

    Muscle Dystroglycan Organizes the Postsynapse and Regulates Presynaptic Neurotransmitter Release at the Drosophila Neuromuscular Junction

    Get PDF
    International audienceBACKGROUND: The Dystrophin-glycoprotein complex (DGC) comprises dystrophin, dystroglycan, sarcoglycan, dystrobrevin and syntrophin subunits. In muscle fibers, it is thought to provide an essential mechanical link between the intracellular cytoskeleton and the extracellular matrix and to protect the sarcolemma during muscle contraction. Mutations affecting the DGC cause muscular dystrophies. Most members of the DGC are also concentrated at the neuromuscular junction (NMJ), where their deficiency is often associated with NMJ structural defects. Hence, synaptic dysfunction may also intervene in the pathology of dystrophic muscles. Dystroglycan is a central component of the DGC because it establishes a link between the extracellular matrix and Dystrophin. In this study, we focused on the synaptic role of Dystroglycan (Dg) in Drosophila. METHODOLOGY/PRINCIPAL FINDINGS: We show that Dg was concentrated postsynaptically at the glutamatergic NMJ, where, like in vertebrates, it controls the concentration of synaptic Laminin and Dystrophin homologues. We also found that synaptic Dg controlled the amount of postsynaptic 4.1 protein Coracle and alpha-Spectrin, as well as the relative subunit composition of glutamate receptors. In addition, both Dystrophin and Coracle were required for normal Dg concentration at the synapse. In electrophysiological recordings, loss of postsynaptic Dg did not affect postsynaptic response, but, surprisingly, led to a decrease in glutamate release from the presynaptic site. CONCLUSION/SIGNIFICANCE: Altogether, our study illustrates a conservation of DGC composition and interactions between Drosophila and vertebrates at the synapse, highlights new proteins associated with this complex and suggests an unsuspected trans-synaptic function of Dg

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified

    Dynamic Switch of Negative Feedback Regulation in Drosophila Akt–TOR Signaling

    Get PDF
    Akt represents a nodal point between the Insulin receptor and TOR signaling, and its activation by phosphorylation controls cell proliferation, cell size, and metabolism. The activity of Akt must be carefully balanced, as increased Akt signaling is frequently associated with cancer and as insufficient Akt signaling is linked to metabolic disease and diabetes mellitus. Using a genome-wide RNAi screen in Drosophila cells in culture, and in vivo analyses in the third instar wing imaginal disc, we studied the regulatory circuitries that define dAkt activation. We provide evidence that negative feedback regulation of dAkt occurs during normal Drosophila development in vivo. Whereas in cell culture dAkt is regulated by S6 Kinase (S6K)–dependent negative feedback, this feedback inhibition only plays a minor role in vivo. In contrast, dAkt activation under wild-type conditions is defined by feedback inhibition that depends on TOR Complex 1 (TORC1), but is S6K–independent. This feedback inhibition is switched from TORC1 to S6K only in the context of enhanced TORC1 activity, as triggered by mutations in tsc2. These results illustrate how the Akt–TOR pathway dynamically adapts the routing of negative feedback in response to the activity load of its signaling circuit in vivo
    corecore