200 research outputs found

    The prognosis of allocentric and egocentric neglect : evidence from clinical scans

    Get PDF
    We contrasted the neuroanatomical substrates of sub-acute and chronic visuospatial deficits associated with different aspects of unilateral neglect using computed tomography scans acquired as part of routine clinical diagnosis. Voxel-wise statistical analyses were conducted on a group of 160 stroke patients scanned at a sub-acute stage. Lesion-deficit relationships were assessed across the whole brain, separately for grey and white matter. We assessed lesions that were associated with behavioural performance (i) at a sub-acute stage (within 3 months of the stroke) and (ii) at a chronic stage (after 9 months post stroke). Allocentric and egocentric neglect symptoms at the sub-acute stage were associated with lesions to dissociated regions within the frontal lobe, amongst other regions. However the frontal lesions were not associated with neglect at the chronic stage. On the other hand, lesions in the angular gyrus were associated with persistent allocentric neglect. In contrast, lesions within the superior temporal gyrus extending into the supramarginal gyrus, as well as lesions within the basal ganglia and insula, were associated with persistent egocentric neglect. Damage within the temporo-parietal junction was associated with both types of neglect at the sub-acute stage and 9 months later. Furthermore, white matter disconnections resulting from damage along the superior longitudinal fasciculus were associated with both types of neglect and critically related to both sub-acute and chronic deficits. Finally, there was a significant difference in the lesion volume between patients who recovered from neglect and patients with chronic deficits. The findings presented provide evidence that (i) the lesion location and lesion size can be used to successfully predict the outcome of neglect based on clinical CT scans, (ii) lesion location alone can serve as a critical predictor for persistent neglect symptoms, (iii) wide spread lesions are associated with neglect symptoms at the sub-acute stage but only some of these are critical for predicting whether neglect will become a chronic disorder and (iv) the severity of behavioural symptoms can be a useful predictor of recovery in the absence of neuroimaging findings on clinical scans. We discuss the implications for understanding the symptoms of the neglect syndrome, the recovery of function and the use of clinical scans to predict outcome

    Neural Reuse and the Nature of Evolutionary Constraints

    Get PDF
    In humans, the reuse of neural structure is particularly pronounced at short, task-relevant timescales. Here, an argument is developed for the claim that facts about neural reuse at task-relevant timescales conflict with at least one characterization of neural reuse at an evolutionary timescale. It is then argued that, in order to resolve the conflict, we must conceptualize evolutionary-scale reuse more abstractly than has been generally recognized. The final section of the paper explores the relationship between neural reuse and human nature. It is argued that neural reuse is not well-described as a process that constrains our present cognitive capacities. Instead, it liberates those capacities from the ancestral tethers that might otherwise have constrained them

    Active Inference, Novelty and Neglect

    Get PDF
    In this chapter, we provide an overview of the principles of active inference. We illustrate how different forms of short-term memory are expressed formally (mathematically) through appealing to beliefs about the causes of our sensations and about the actions we pursue. This is used to motivate an approach to active vision that depends upon inferences about the causes of 'what I have seen' and learning about 'what I would see if I were to look there'. The former could manifest as persistent 'delay-period' activity - of the sort associated with working memory, while the latter is better suited to changes in synaptic efficacy - of the sort that underlies short-term learning and adaptation. We review formulations of these ideas in terms of active inference, their role in directing visual exploration and the consequences - for active vision - of their failures. To illustrate the latter, we draw upon some of our recent work on the computational anatomy of visual neglect

    Relationship Between Cortical Gyrification, White Matter Connectivity, and Autism Spectrum Disorder.

    Get PDF
    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition, which is accompanied by differences in gray matter neuroanatomy and white matter connectivity. However, it is unknown whether these differences are linked or reflect independent aetiologies. Using a multimodal neuroimaging approach, we therefore examined 51 male adults with ASD and 48 neurotypical controls to investigate the relationship between gray matter local gyrification (lGI) and white matter diffusivity in associated fiber tracts. First, ASD individuals had a significant increase in gyrification around the left pre- and post-central gyrus. Second, white matter fiber tracts originating and/or terminating in the cluster of increased lGI had a significant increase in axial diffusivity. This increase in diffusivity was predominantly observed in tracts in close proximity to the cortical sheet. Last, we demonstrate that the increase in lGI was significantly correlated with increased diffusivity of short tracts. This relationship was not significantly modulated by a main effect of group (i.e., ASD), which was more closely associated with gray matter gyrification than white matter diffusivity. Our findings suggest that differences in gray matter neuroanatomy and white matter connectivity are closely linked, and may reflect common rather than distinct aetiological pathways

    Brain disconnectome mapping and serum neurofilament light levels in multiple sclerosis

    Get PDF
    The pathophysiological mechanisms for classical plaque characteristics and their predictive value for clinical course and outcome in multiple sclerosis is unclear. Connectivity-based approaches incorporating the distribution and magnitude of the extended brain network aberrations caused by lesions may offer higher sensitivity for axonal damage. Using individual brain disconnectome mapping, we tested the longitudinal associations between putative brain network aberrations and levels of serum neurofilament light chain (sNfL) as a neuroaxonal injury biomarker. Multiple sclerosis patients (n = 328, mean age 42.9 years, 71 % female) were prospectively enrolled at four European multiple sclerosis centres, and reassessed after two years (n = 280). Post-processing of 3 Tesla (3T) MRI data was performed at one centre using a harmonized pipeline, and disconnectome maps were calculated using BCBtoolkit based on individual lesion maps. Global disconnectivity (GD) was defined as the average disconnectome probability in each patient′s white matter. Serum NfL concentrations were measured by single molecule array (Simoa). Robust linear mixed models (rLMM) with GD or T2-lesion volume (T2LV) as dependent variables, patient and centre as a random factor, sNfL, age, sex, timepoint for visit, diagnosis, and treatment as fixed factors were run. Robust LMM revealed significant associations between higher levels of GD and increased sNfL (t = 2.30, β = 0.03, p = 0.02), age (t = 5.01, β = 0.32, p < 5.5 x 10-7), and diagnosis progressive multiple sclerosis (PMS); t = 1.97, β = 1.06, p = 0.05), but not for sex (t = 0.78, p = 0.43), treatments (effective; t = 0.85, p = 0.39, highly-effective; t = 0.86, p = 0.39) or sNfL change between base line and two-year follow up (t = -1.65, p = 0.10). Voxel-wise analyses revealed distributed associations in cerebellar and brainstem regions. In our prospective multi-site multiple sclerosis cohort, rLMMs demonstrated that the extent of global brain disconnectivity is sensitive to a systemic biomarker of axonal damage, sNfL, in patients with multiple sclerosis. These findings provide a neuropathological correlate of advanced disconnectome mapping and provide a platform for further investigations of the functional and clinical relevance in patients with brain disorders

    Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants

    Get PDF
    The human default mode network (DMN) is implicated in several unique mental capacities. In this study, we tested whether brain-wide interregional communication in the DMN can be derived from population variability in intrinsic activity fluctuations, gray-matter morphology, and fiber tract anatomy. In a sample of 10,000 UK Biobank participants, pattern-learning algorithms revealed functional coupling states in the DMN that are linked to connectivity profiles between other macroscopical brain networks. In addition, DMN gray matter volume was covaried with white matter microstructure of the fornix. Collectively, functional and structural patterns unmasked a possible division of labor within major DMN nodes: Subregions most critical for cortical network interplay were adjacent to subregions most predictive of fornix fibers from the hippocampus that processes memories and places

    Altered orbitofrontal sulcogyral patterns in gambling disorder: a multicenter study

    Get PDF
    Gambling disorder is a serious psychiatric condition characterized by decision-making and reward processing impairments that are associated with dysfunctional brain activity in the orbitofrontal cortex (OFC). However, it remains unclear whether OFC functional abnormalities in gambling disorder are accompanied by structural abnormalities. We addressed this question by examining the organization of sulci and gyri in the OFC. This organization is in place very early and stable across life, such that OFC sulcogyral patterns (classified into Types I, II, and III) can be regarded as potential pre-morbid markers of pathological conditions. We gathered structural brain data from nine existing studies, reaching a total of 165 individuals with gambling disorder and 159 healthy controls. Our results, supported by both frequentist and Bayesian statistics, show that the distribution of OFC sulcogyral patterns is skewed in individuals with gambling disorder, with an increased prevalence of Type II pattern compared with healthy controls. Examination of gambling severity did not reveal any significant relationship between OFC sulcogyral patterns and disease severity. Altogether, our results provide evidence for a skewed distribution of OFC sulcogyral patterns in gambling disorder and suggest that pattern Type II might represent a pre-morbid structural brain marker of the disease. It will be important to investigate more closely the functional implications of these structural abnormalities in future work.Y.L. was supported by the National Natural Science Foundation of China (Grant No. 31600929) and the Fundamental Research Funds for the Central Universities (010914380002). G.S. was supported by a Veni grant from the Netherlands Organization for Scientific Research (Grant No. 016.155.218). J.J. was supported by the Academy of Finland (Grant No. 295580), the Finnish Medical Foundation, and the Finnish Foundation for Alcohol Studies. V.K. was supported by the Academy of Finland (Grant No. 256836) and the Finnish Foundation for Alcohol Studies. S.G. and H.R.S. were supported by the Danish Council for Independent Research in Social Sciences through a grant to Thomas Ramsøy (“Decision Neuroscience Project”; Grant No. 0601-01361B) and by the Lundbeck Foundation through a Grant of Excellence (“ContAct”; Grant No. R59 A5399). A.G. was supported by Deutsche Forschungsgemeinschaft (DFG) HE2597/15–1, HE2597/15–2, and DFG Graduiertenkolleg 1589/2 “Sensory Computation in Neural Systems”. N.R.-S. was supported by a research grant by the Senatsverwaltung für Gesundheit und Soziales, Berlin, Germany (Grant No. 002–2008/I B 35). C.M.R.d.L. and J.C.P. were supported by a grant from the Spanish Government (Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación; Convocatoria 2017 de Proyectos I+D de Excelencia, Spain; co-funded by the Fondo Europeo de Desarrollo Regional, FEDER, European Union; Grant No. PSI2017–85488-P). J.-C. D. was supported by “LABEX ANR-11-LABEX-0042” of Université de Lyon within the program Investissements d’Avenir (ANR-11-IDEX-007) operated by the French National Research Agency and by a grant from the Fondation pour la Recherche Médicale (Grant No. DPA20140629796)

    Brain disconnectome mapping derived from white matter lesions and serum neurofilament light levels in multiple sclerosis: a longitudinal multicenter study

    Get PDF
    BACKGROUND AND OBJECTIVES: Connectivity-based approaches incorporating the distribution and magnitude of the extended brain network aberrations caused by lesions may offer higher sensitivity for axonal damage in patients with multiple sclerosis (MS) than conventional lesion characteristics. Using individual brain disconnectome mapping, we tested the longitudinal associations between putative imaging-based brain network aberrations and levels of serum neurofilament light chain (NfL) as a neuroaxonal injury biomarker. METHODS: MS patients (n = 312, mean age 42.9 years, 71 % female) and healthy controls (HC) (n = 59, mean age 39.9 years, 78 % female) were prospectively enrolled at four European MS centres, and reassessed after two years (MS, n = 242; HC, n = 30). Post-processing of 3 Tesla (3 T) MRI data was performed at one centre using a harmonized pipeline, and disconnectome maps were calculated using BCBtoolkit based on individual lesion maps. Global disconnectivity (GD) was defined as the average disconnectome probability in each patient's white matter. Serum NfL concentrations were measured by single molecule array (Simoa). Robust linear mixed models (rLMM) with GD or T2-lesion volume (T2LV) as dependent variables, patient as a random factor, serum NfL, age, sex, timepoint for visit, diagnosis, treatment, and center as fixed factors were run. RESULTS: rLMM revealed significant associations between GD and serum NfL (t = 2.94, p = 0.003), age (t = 4.21, p = 2.5 × 10(-5)), and longitudinal changes in NfL (t = -2.29, p = 0.02), but not for sex (t = 0.63, p = 0.53) or treatments (t = 0.80-0.83, p = 0.41-0.42). Voxel-wise analyses revealed significant associations between dysconnectivity in cerebellar and brainstem regions and serum NfL (t = 7.03, p < 0.001). DISCUSSION: In our prospective multi-site MS cohort, rLMMs demonstrated that the extent of global and regional brain disconnectivity is sensitive to a systemic biomarker of axonal damage, serum NfL, in patients with MS. These findings provide a neuroaxonal correlate of advanced disconnectome mapping and provide a platform for further investigations of the functional and potential clinical relevance of brain disconnectome mapping in patients with brain disorders

    Heat shock proteins in stabilization of spontaneously restored sinus rhythm in permanent atrial fibrillation patients after mitral valve surgery

    Get PDF
    A spontaneously restored sinus rhythm in permanent atrial fibrillation patients has been often observed after mitral valve (MV) surgery, but persisting duration in sinus rhythm varies from patient to patient. Heat shock proteins (Hsps) may be involved in pathogenesis of atrial fibrillation. We hypothesized that stabilization of restored sinus rhythm is associated with expression of Hsps in the atria. To test this hypothesis, clinical data, biopsies of right atrial appendage, and blood samples were collected from 135 atrial fibrillation patients who spontaneously restored sinus rhythm after conventional isolated MV replacement. Comparison was made between patients who had recurrence of atrial fibrillation within 7 days (AF) vs. patients with persisted sinus rhythm for more than 7 days (SR). Results showed that SR patients had higher activity of heat shock transcription factor 1 (HSF1) as well as upregulated expressions of heat shock cognate 70, Hsp70, and Hsp27 in the tissues. The activation of HSF1–Hsps pathway was associated with less-aggressive pathogenesis as reflected by lower rates of myolysis, apoptosis, interstitial fibrosis, and inflammation in SR patients. However, Hsp60 was lower in both tissue and plasma in SR patients, and was positively correlated with apoptosis, interstitial fibrosis, and inflammation. These findings suggest that the Hsps play important roles in stabilization of restored sinus rhythm after MV surgery by inhibiting AF-related atrial remodeling and arrhythmogenic substrates in atrial fibrillation patients. Low circulating Hsp60 levels preoperatively might predict a stable spontaneously restored sinus rhythm postoperatively
    corecore