627 research outputs found

    CFD modelling of a pilot-scale counter-current spray drying tower for the manufacture of detergent powder

    Get PDF
    A steady-state, three-dimensional, multiphase CFD modelling of a pilot-plant counter-current spray drying tower is carried out to study the drying behavior of detergent slurry droplets. The software package ANSYS Fluent is employed to solve the heat, mass and momentum transfer between the hot gas and the polydispersed droplets/particles using the Eulerian-Lagrangian approach. The continuous phase turbulence is modelled using the differential Reynolds stress model. The drying kinetics is modelled using a single droplet drying model[1] which is incorporated into the CFD code using user-defined functions. Heat loss from the insulated tower wall to the surrounding is modelled by considering thermal resistances due to deposits on the inside surface, wall, insulation and outside convective film. For the particle-wall interaction, the restitution coefficient is specified as a constant value as well as a function of particle moisture content. It is found that the variation in the value of restitution coefficient with moisture causes significant changes in the velocity, temperature and moisture profiles of the gas as well as the particles. Overall, a reasonably good agreement is obtained between the measured and predicted powder temperature, moisture content and gas temperature at the bottom and top outlets of the tower; considering the complexity of the spray drying process, simplifying assumptions made in both the CFD and droplet drying models and the errors associated with the measurements

    IMECE2009-10157 Contact Time Study of Microsystems Actuated by Ramp-Input Voltages

    Get PDF
    ABSTRACT This paper presents a model to analyze contact phenomenon in microsystems, actuated by ramp voltages, which has applications in frequency sweeping. First-order shear deformation theory is used to model dynamical system using finite element method, while finite difference method is applied to model squeeze film damping. The model is validated by static pull-in results. The presented hybrid FEM-FDM model is utilized to compute values of contact time and dynamic behavior. Considering this model, effects of different geometrical and mechanical parameters on contact time are studied. The influence of imposing the additional reverse voltage on dynamic characteristics of the system is also investigated. It is shown that magnitude and position of applying the reverse voltage is very important in preventing pull-in instability

    Interactive environmental sensing: Signal and image processing challenges

    Get PDF

    A subcutaneous adipose tissue-liver signalling axis controls hepatic gluconeogenesis.

    Get PDF
    The search for effective treatments for obesity and its comorbidities is of prime importance. We previously identified IKK-ε and TBK1 as promising therapeutic targets for the treatment of obesity and associated insulin resistance. Here we show that acute inhibition of IKK-ε and TBK1 with amlexanox treatment increases cAMP levels in subcutaneous adipose depots of obese mice, promoting the synthesis and secretion of the cytokine IL-6 from adipocytes and preadipocytes, but not from macrophages. IL-6, in turn, stimulates the phosphorylation of hepatic Stat3 to suppress expression of genes involved in gluconeogenesis, in the process improving glucose handling in obese mice. Preliminary data in a small cohort of obese patients show a similar association. These data support an important role for a subcutaneous adipose tissue-liver axis in mediating the acute metabolic benefits of amlexanox on glucose metabolism, and point to a new therapeutic pathway for type 2 diabetes

    An Investigation on the Nonlinear Free Vibration Analysis of Beams with Simply Supported Boundary Conditions Using Four Engineering Theories

    Get PDF
    The objective of this study is to present a brief survey on the geometrically nonlinear free vibrations of the Bernoulli-Euler, the Rayleigh, shear, and the Timoshenko beams with simple end conditions using the Homotopy Analysis Method (HAM). Expressions for the natural frequencies, the transverse deflection, postbuckling load-deflection relation to, and critical buckling load are presented. The results of nonlinear analysis are validated with the published results, and excellent agreement is observed. The effects of some parameters, such as slender ratio, the rotary inertia, and the shear deformation, are examined as other parameters are fixed

    Sampling constrained probability distributions using Spherical Augmentation

    Full text link
    Statistical models with constrained probability distributions are abundant in machine learning. Some examples include regression models with norm constraints (e.g., Lasso), probit, many copula models, and latent Dirichlet allocation (LDA). Bayesian inference involving probability distributions confined to constrained domains could be quite challenging for commonly used sampling algorithms. In this paper, we propose a novel augmentation technique that handles a wide range of constraints by mapping the constrained domain to a sphere in the augmented space. By moving freely on the surface of this sphere, sampling algorithms handle constraints implicitly and generate proposals that remain within boundaries when mapped back to the original space. Our proposed method, called {Spherical Augmentation}, provides a mathematically natural and computationally efficient framework for sampling from constrained probability distributions. We show the advantages of our method over state-of-the-art sampling algorithms, such as exact Hamiltonian Monte Carlo, using several examples including truncated Gaussian distributions, Bayesian Lasso, Bayesian bridge regression, reconstruction of quantized stationary Gaussian process, and LDA for topic modeling.Comment: 41 pages, 13 figure

    Current tidal power technologies and their suitability for applications in coastal and marine areas

    Get PDF
    A considerable body of research is currently being performed to quantify available tidal energy resources and to develop efficient devices with which to harness them. This work is naturally focussed on maximising power generation from the most promising sites, and a review of the literature suggests that the potential for smaller scale, local tidal power generation from shallow near-shore sites has not yet been investigated. If such generation is feasible, it could have the potential to provide sustainable electricity for nearby coastal homes and communities as part of a distributed generation strategy, and would benefit from easier installation and maintenance, lower cabling and infrastructure requirements and reduced capital costs when compared with larger scale projects. This article reviews tidal barrages and lagoons, tidal turbines, oscillating hydrofoils and tidal kites to assess their suitability for small-scale electricity generation in shallow waters. This is achieved by discussing the power density, scalability, durability, maintainability, economic potential and environmental impacts of each concept. The performance of each technology in each criterion is scored against axial-flow turbines, allowing for them to be ranked according to their overall suitability. The review suggests that tidal kites and range devices are not suitable for small-scale shallow water applications due to depth and size requirements respectively. Cross-flow turbines appear to be the most suitable technology, as they have high power densities and a maximum size that is not constrained by water depth

    A qualitative descriptive analysis of nurses' perceptions of hospice care for deceased children following organ donation in hospice cool rooms

    Get PDF
    YesFollowing organ donation, bodies of children are generally cared for in hospital mortuaries or by funeral directors, and their families are offered little routine bereavement support. A partnership between an organ donation nursing team and regional children's hospice trialled an initiative where families were offered bereavement support from the hospice, and their child's body was cared for in a 'cool room' after death. Hospice services are usually restricted to children with life-limiting conditions, and their families. To explore the perceptions and experience of nursing staff who are involved in supporting families of children and young people who have been cared for in children's hospice cool rooms after death, following organ donation. A qualitative exploratory study consisting of a focus group interview with registered nurses from the children's hospice and organ donation teams. A purposeful sample of nurses was recruited. Data were collected in a digitally-recorded focus group interview during March 2018. The interview was transcribed and analysed using a qualitative content approach. Six nurses participated in the focus group. Analysis revealed five themes that characterised the perceptions of nurses: (i) barriers to care, (ii) bereavement care for families, (iii) impact on families and staff, (iv) influencers and enablers of change, and (v) sustainability of new practices. Nurses perceived the long-term, responsive and family-centred approach to bereavement support as a strength of the hospice model, reducing the experience of moral distress in organ donation nurses
    • …
    corecore