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The aim of this paper is to present analytical and exact expressions for the frequency and buckling of large amplitude vibration
of the symmetrical laminated composite beam (LCB) with simple and clamped end conditions. The equations of motion are
derived by using Hamilton’s principle. The influences of axial force, Poisson effect, shear deformation, and rotary inertia are taken
into account in the formulation. First, the geometric nonlinearity based on the von Karman’s assumptions is incorporated in the
formulation while retaining the linear behavior for the material. Then, the displacement fields used for the analysis are coupled
using the equilibrium equations of the composite beam. Substituting this coupled displacement fields in the potential and kinetic
energies and using harmonic balance method, we obtain the ordinary differential equation in time domain. Finally, applying first
order of homotopy analysis method (HAM), we get the closed form solutions for the natural frequency and deflection of the
LCB. A detailed numerical study is carried out to highlight the influences of amplitude of vibration, shear deformation and rotary
inertia, slenderness ratios, and layup in the case of laminates on the natural frequency and buckling load.

1. Introduction

The uses of composite materials in structural components
are increasing due to their attractive properties such as high
strength/stiffness, light weight, and facility to materialize
fiber orientation, material and stacking sequence. Beam-like
structures have numerous applications in the industries such
as aerospace and robotics. The increased use of the LCB
requires a better understanding of large amplitude vibration
aspects of them.

Nonlinear dynamic analysis of the LCB on the basis
of classical lamination theory (CLT) has received a good
amount of attention in the literature [1–6] while relatively
little investigations [7, 8] have been performed for dynamic
investigation of such beams with low slenderness ratio
(length of the beam to the radius of gyration of the cross-
section i.e. = L/r) which have to be taken into account
the shear deformation and rotary inertia. It should be
noted that for the later, the equation of motion is complex,
and even obtaining an approximate solution is much more
difficult.

In our previous work in [1], we presented analytical
expressions for large amplitude-free vibration and postbuck-
ling analysis of unsymmetrically LCB on elastic foundation
by using variational iteration method. We used the CLT
to obtain differential equations of motion. A differential
quadrature approach for nonlinear free vibration analysis
of symmetric angle-ply laminated thin beams on nonlinear
elastic foundation with elastically restrained against rotation
edges has been studied by Malekzadeh and Vosoughi [2].
Patel et al. [3] have extended a new three-nodded shear
flexible beam element based on consistency approach to
analyze the nonlinear flexural vibration and postbuck-
ling behavior of simply supported laminated orthotropic
composite beams on a two-parameter elastic foundation.
The axial and transverse deformations of a geometrically
nonlinear composite beam were considered to obtain a
closed form solution for the postbuckling behavior of
composite beams and to exactly solve for the free vibrations
that take place around a buckled position by Emam and
Nayfeh [4]. Kapania and Raciti [5] presented a two-nodded
Timoshenko beam element with 10 degrees of freedom per

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192425162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Advances in Acoustics and Vibration

node to examine the large amplitude free vibrations of LCB.
The nonlinear free flexural vibrations of isotropic/laminated
orthotropic straight/curved beams have been studied using
a cubic B-spline shear flexible curved element [6]. The
nonlinear governing equations are solved by employing
Newmark’s numerical integration scheme coupled with
modified Newton-Raphson iteration technique. Kiran et al.
[7] had investigated the large amplitude free vibrations of
generally layered laminated composite beams by developing
a finite element model. A one-dimensional finite element
formulation based on a higher-order displacement model
has been developed by Obst and Kapania [8]. The model
accounts for geometric nonlinearities, a parabolic shear
strain distribution through the thickness, and satisfies the
shear stress free boundary conditions at the upper and
lower surfaces of the beam. The model has been applied
to the nonlinear static and transient analysis, free vibration
analysis, and impact analysis of laminated beams.

To the best author’s knowledge, there is no analytical
expressions in the literature on the large amplitude free
vibrations analysis of the symmetrically LCB on the basis of
first shear deformation theory (FSDT). Thus, the contribu-
tion of this paper is to expand our previous work in [1] by
studying the more complicated and important problem to
obtain the closed-form expressions for natural frequency and
deflection.

2. Equations of Motion and
Boundary Condition

The considered LCB with simple end conditions is shown in
Figure 1 with the coordinates x̂ along the axis of the beam
and ẑ along the thickness direction. L,P, ŵ(x̂, ̂t), ̂t are length,
compressive axial load, deflection of the beam, and time,
respectively.

2.1. Coupling Equations. Based on FSDT, the LCB is char-
acterized by its bending rigidity EI, torsional rigidity GJ,
bending-torsion coupling rigidity C, and shear rigidity kAG
[9]. The derivation of these rigidities is briefly summarized
in Appendix A [10].

The kinetic and potential energies of the LCB and the
work done by the static lateral load per unit length of the
beam Fz can be written as

T = 1
2

∫ L

0

[

I1ŵ
2
,̂t

+ I2θ,̂t
2 + Ipψ,̂t

2
]

dx̂,

U = 1
2

∫ L

0

[

EIθ,x̂
2 − P

(

ŵ,x̂
2 +

Ip
I1
ψ,x̂

2
)

+ 2Cψ,x̂θ,x̂

+kAG
(

ŵ,x̂ − θ
)2 + GJψ,x̂

2
]

dx̂,

W =
∫ L

0
Fzŵdx̂,

(1)

where comma denotes derivative with respect to x; θ,ψ, are
the angle of rotation and torsional rotation, respectively;
I1, I2 and Ip are the first and second moment of inertia about

ẑ

x̂
ŵ(x̂, ^t)

L

P

Figure 1: Geometry of a laminated composite beam.

y-axis and the polar mass moment of inertia per unit length
about the x-axis, respectively.

For the subsequent results to be general, we use the fol-
lowing nondimensional variables:

x = x̂

L
, w = ŵ

r
, t = ̂t

√

bD11/(I1L4)
, r =

√

I

A
(2)

which r, b, I , and A are the radius of gyration of the
cross-section, beam width, second moment of area, and the
area of the cross-section, respectively, and D11 is defined in
Appendix A.

Thus, the kinetic and potential energy and the work done
can be rewritten as follows:

T = I1L5

2bD11

∫ 1

0

[

I1r2w,t
2 + I2θ,t

2 + Ipψ,t
2
]

dx,

U = 1
2

∫ 1

0

[

EI
L
θ,x

2 − P

L

(

r2w,x
2

+
Ip
I1
ψ,x

2
)

+
2C
L
ψ,xθ,x

+
kAG
L

(

rw,x − Lθ
)2 +

GJ
L
ψ,x

2
]

dx,

W =
∫ 1

0
Fzw dx.

(3)

Applying the principle of minimization of total potential
energy (δ(U − W)), we obtain the following equilibrium
equations as follows:

EI
L2
θ′′ + kAG

(

r

L
w′ − θ

)

+
C
L2
ψ′′ = 0, (4)

kAG
(

r

L2
− 1
L
θ′
)

− Pr

L2
w′′ + Fz = 0, (5)

GJ
L2
ψ′′ +

C
L2
θ′′ − PIP

I1L2
ψ′′ = 0 (6)

in which prime denotes derivative with respect to nondimen-
sional coordinate x. These equations are coupled equations
and can be solved to get the coupled displacement fields [11].

2.2. Coupled Displacement Fields. Equations (4) and (6) are
used to couple the rotation θ, torsion ψ, and deflection of the
beam w [11]. These equations can be rewritten as

ψ′′ = −A1θ
′′, θ′′ + A2θ = A2

η
w′, (7)
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where

A1 = C
GJ− (PIP/I1)

, A2 = kAGL2

CA1 − EI
, (8)

and η is the slenderness ratio, that is, η = L/r.

2.2.1. Simple End Conditions. The boundary conditions for
the simple end conditions beam are as follows:

(w = 0, M = 0, T = 0)at x=0,1

=⇒ (

w = 0, θ′ = 0, ψ′ = 0
)

at x=0,1.
(9)

The transverse displacement w is assumed as

w(x, t) = u(t) sin(πx), (10)

where u(t) is the amplitude parameter and only is a function
of t. Substituting the functionw in (7), we obtain the coupled
rotation θ and torsion ψ as

θ(x, t) = D1u(t) cos(πx), ψ = −A1D1u(t) cos(πx),
(11)

where

D1 = πA2

η(A2 − π2)
. (12)

2.2.2. Clamped End Conditions. In the case of the clamped-
clamped beam, the boundary conditions are as follows:

(

w = 0, θ = 0, ψ = 0
)

at x=0,1. (13)

The admissible function for the w is taken as follows:

w = u(t)(1− cos(2πx)). (14)

From (7) and (14), the coupled displacement fields for θ and
ψ are obtained as follows:

θ = D2u(t) sin(2πx),

ψ = −A1D2u(t) sin(2πx),
(15)

where:

D2 = 2πA2

η(A2 − 4π2)
. (16)

2.3. Large Amplitude Vibrations. Consider that there is no
external load on the beam, that is, Fz = 0. The total energy
for free oscillation of a system without damping is constant
(energy conservation principle):

T +U +W1 = Constant, (17)

where W1 is the work done by the tension developed in the
LCB due to the large amplitudes and is given by [11, 12]

W1 = EIr2

8L3

(
∫ 1

0
w,x

2dx

)2

. (18)

Substituting the expressions for w, θ, and ψ, the expressions
for U ,T, and W1 can be obtained as

T = C1u̇2, U = (C2 − C3P)u2, W1 = C4u4

(19)

in which coefficients Ci(i = 1 − 4) for simple and clamped
end conditions are expressed as

simple end conditions:

C1 =
I1L5

(

I1r2 + IPA1
2D1

2 + I2D1
2
)

4bD11
,

C2

=
π2
(

EID1
2 − 2CD1

2A1

)

4L

+

(

kAGL2D1
2 − 2kAGrπLD1 + kAGr2π2 + GJA1

2D1
2π2

)

4L
,

C3 =
π2
(

IPA1
2D1

2 + r2I1
)

4LI1
,

C4 = EIr2π4

32L3
,

(20)

clamped end conditions:

C1 =
I1L5

(

3I1r2 + IPA1
2D2

2 + I2D2
2
)

4bD11
,

C2

=
π2
(

EID2
2 − 2CD2

2A1

)

L

+

(

kAGL2D2
2 − 4kAGrπLD2 + 4kAGr2π2 + 4GJA1

2D2
2π2

)

4L
,
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π2
(

IPA1
2D2

2 + r2I1
)

LI1
,

C4 = EIr2π4

2L3
.

(21)

Substituting the expressions for T, U , and W1 in (17), we get
the following equation:

C1u̇2 + (C2 − C3P)u2 + C4u4 = Constant. (22)

Differentiating (22), we obtain the nonlinear ordinary differ-
ential equations as follows:

ü +
C2 − C3P

C1
u +

2C4

C1
u3 = 0 ≡ ü + αu + βu3 = 0.

(23)
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In order to obtain the postbuckling load-deflection relation,
one can set all time-derivative terms in (23) equal to zero
which yields

PNL = 2C4u2 +C2

C3
. (24)

Neglecting the contribution of u in (24), the critical buckling
load can be determined as

Pcr = C2

C3
. (25)

3. Method of Solution: Implementation of
the HAM in Beam Vibrations

For convenience of the reader, we present a brief description
of the HAM in Appendix B.

Under the transformation τ = ωt and W(τ) = u(t), (23)
becomes as follows:

ω2Ẅ + αW + βW3 = 0. (26)

The zero-order deformation equation can be written as
below

(

1− q)L[ϕ(τ; q
) −W0(τ)

] = qh�(τ)N
[

ϕ
(

τ; q
)]

(27)

in which

N
[

ϕ
(

τ; q
)] = ω2 ∂

2ϕ
(

τ; q
)

∂τ2 + αϕ
(

τ; q
)

+ βϕ(τ; q)3 = 0.

(28)

We chose the following auxiliary linear operator as:

L
[

ϕ
(

τ; q
)] = ω0

2

[

∂2ϕ
(

τ; q
)

∂τ2 + ϕ
(

τ; q
)

]

. (29)

We employ Taylor expansion series for ϕ(t; q) and ω(q) as

ϕ
(

τ; q
) = ϕ(τ; 0) +

∞
∑

m=1

1
m!

∂mϕ(τ; q)
∂qm

∣

∣

∣

∣

∣

q=0

× qm =W0(τ) +
∞
∑

m=1

Wm(τ)qm,

(30)

ω
(

q
) = ω0 +

∞
∑

m=1

1
m!

∂mω
(

q
)

∂qm

∣

∣

∣

∣

∣

q=0

qm = ω0 +
∞
∑

m=1

ωmqm.

(31)

In order to satisfy the initial conditions, the initial guess of
W(τ) is chosen as follows:

W0(τ) =Wmax cos(τ). (32)

In our case, to obtain the first-order approximation, the fun-
ction of W1(t) can be expressed as (see Appendix B)

L[W1(t)] = �h(t)N
[

φ
(

t; p
)]∣

∣

p=0, (33)

W1(0) = 0,
dW1(0)
dt

= 0. (34)

Assuming � = −1, h(t) = 1 and after substituting (32) in
(33), one would get

ω0
2(Ẅ1 +W1

) =Wmax cos(τ)
(

ω0
2 − α− 3

4
βWmax

2
)

− βWmax
3

4
cos(3τ),

(35)

W1(0) = 0, Ẇ1(0) = 0. (36)

Eliminating the secular term, we have

ω0 =
√

α +
3
4
βWmax

2. (37)

Solving (35) and (36), the W1(τ) is obtained as follows:

W1(τ) = L1

8 ω0
2

(cos(τ)− cos(3τ)), (38)

where

L1 = −1
4
βWmax

3. (39)

Thus the first-order approximation of the W(τ) yields to,

W(τ) =W0(τ) +W1(τ) (40)

in which

τ = ωt, ω = ω0. (41)

4. Numerical Results and Discussion

To validate the presented relations, the results of the natural
frequency for the single isotropic lamina and the LCB with
simple and clamped end conditions are compared with the
available results in the literatures.

The variables used in the tables and plots are the non-
linear to linear frequency ratio, ωNL/ωL, the nondimensional
amplitude of the vibration, Wmax, and the postbuckling
load to critical load, PNL/Pcr, (henceforth referred to as the
frequency ratio, the amplitude ratio, and the buckling load
ratio, resp.).

The materials steel and AS4/3501 Graphite-Epoxy, hav-
ing the following mechanical properties, are used for the
study.

Steel:

E = 206.8 Gpa, G = 79 Gpa,

υ = 0.3, ρ = 7800 kg/m3.
(42)

AS4/3501 graphite/epoxy:

E11 = 144.8 Gpa, E22 = 9.65 Gpa,

G12 = 4.14 Gpa, G13 = 4.14 Gpa,
(43)

G23 = 4.14 Gpa, υ12 = 0.3, ρ = 1389.23 kg/m3.
(44)
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Table 1: Comparison of the frequency ratio of the isotropic single layer beam with simple end conditions for different amplitude ratio.

Wmax
For Slender beams without considering
shear deformation and rotary inertia

η = L/r

10 25 50 100
Ref. [1] Ref. [13] Ref. [14]

Ref. [15] Present Ref. [15] Present Ref. [15] Present Ref. [15] Present

1 1.0892 1.0891 1.0897 1.11162 (7)a 1.1121 1.09253 (5) 1.0940 1.08971 (5) 1.0908 1.08900 (5) 1.0900

2 1.3178 1.3177 1.3229 1.37006 (16) 1.3721 1.32130 (8) 1.3268 1.31425 (7) 1.3264 1.31249 (7) 1.3230

3 1.6257 1.6256 1.6394 1.68839 (47) 1.6981 1.61464 (14) 1.6245 1.60520 (11) 1.6057 1.60295 (11) 1.6399

4 1.9761 — — — 2.2190 — 2.0366 — 2.0092 — 2.0023
a
Numbers in the parentheses indicate the number of iterations required to achieve an accuracy of 10−6 in the evaluation of non-dimensional nonlinear

frequency.

Table 2: Comparison of the frequency ratio of the isotropic single-layer beam with clamped end conditions for different amplitude ratio.

Wmax
η = 25 η = 50 η = 100 η = 500

Ref. [17] Present Ref. [17] Present Ref. [17] Present Ref. [17] Present

1 1.0276 1.0299 1.0242 1.0260 1.0234 1.0240 1.0231 1.0233

2 1.1058 1.1068 1.0933 1.0987 1.0902 1.0910 1.0892 1.0899

3 1.2239 1.2302 1.1987 1.2131 1.1924 1.1950 1.1903 1.928

4 1.3711 1.3856 1.3313 1.3421 1.3212 1.3288 1.3179 1.3235

Table 3: Comparison of the frequency ratio of the LCB with simple end conditions for different amplitude ratio (η = 34.6410).

Wmax
Cross-ply [0/90/90/0] Angle-ply [45/−45/−45/45] General lay-up [30/50/50/30]

Ref. [7] Present Ref. [7] Present Ref. [7] Present

5 1.0253 1.0308 1.0386 1.0397 1.0358 1.0422

1 1.0975 1.1181 1.1466 1.1491 1.1365 1.1451

2 1.3475 1.3543 1.5021 1.5536 1.4711 1.5471

3 1.6822 1.7030 1.9541 1.9949 1.9004 2.0032

4 2.1054 2.2064 2.4484 2.4807 2.3723 2.4020

The shear correction factor k is taken as 5/6, as com-
monly used in the literature. All the layers are of equal
thickness. Fiber orientation is measured from x-axis.

The validity of the results is established by Tables 1 and
3 for simple end conditions and Table 2 for clamped end
conditions. Table 1 shows the frequency ratio for the single
isotropic beam along with the results from literatures. It can
be seen that the frequency obtained from two different beam
models (i.e., Bernoulli-Euler [1, 13, 14] and Timoshenko
[15] beams) yields the same value provided that the beam’s
slenderness ratio be at least 100. This finding is also reported
by [16] in which only the linear analysis was studied. The
same results from [17] are included in Table 2 for the
sake of comparison, and the agreement of the values of
frequency ratio is good for various values of the amplitude
and slenderness ratios.

Also, comparison of the frequency ratio for four-layer
symmetric cross-ply, angle-ply and general lay-up composite
beams with the finite element solutions from [7] for differ-
ent amplitude ratio is reported in Table 3. As can be seen
from these tables, the agreement between the results is quite
good.

Figure 2 illustrates the effects of shear deformation and
rotary inertia on the frequency ratio for three different am-
plitude ratios. It is clear that the CLT predicts the frequency
ratio lower than the one obtained by FSDT. For thin beams
and based on the two considered beam models, namely, CLT
and FSDT, almost no difference is seen for different slender-
ness ratio.

The same layers, that is, layers oriented at 0, 90, 90,
and 0, in two different configurations are considered in
Figure 3 to examine the stacking sequence on the frequency
ratio. As can be observed, the frequency ratio for [0/90/90/0]
configuration is higher than the [90/0/0/90] configuration.
Furthermore, as the amplitude ratio increases, the frequency
ratio increases for two considered lamination schemes.

Figure 4 displays the frequency ratio versus the angle of
orientation for the symmetric angle-ply (θ/ − θ/ − θ/θ) thin
and moderately thick LCB and for three different amplitude
ratios and two considered boundary conditions. It is evident
that all figures for thin and thick beams reach their maximum
values at the orientation around (15◦–20◦). This result is
also reported by [18] in which only the linear study was
conducted. In the intermediate region (60◦ ≤ θ ≤ 90◦), the
frequency ratio remains almost unchanged.
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Figure 2: Effects of shear deformation and rotary inertia on the
frequency ratio versus slenderness ratio for the [0/90/90/0] config-
uration.
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Figure 3: Effect of ply orientation on the frequency ratio of the LCB
for η = 10.

Variation of the buckling load ratio versus amplitude
ratio is shown in Figure 5. As can be observed for thick
beams, there are significant differences between buckling
load ratio predicted by CLT and FSDT. This difference is
more considerable at larger amplitudes.

5. Conclusions

Analytical expressions for the frequency and deflection equa-
tions of the LCB at large amplitude on the basis of FSDT with
simple end conditions have been derived. The applicability of

the theory is demonstrated by numerical results, which show
good agreement with published results.

Limited numerical studies are conducted to examine the
effect of slenderness ratio, fiber orientation, and amplitude
of vibration on the vibration and buckling characteristics of
the LCB. The present study can serve as a quick and accurate
reference to predict the vibration and postbuckling response
of the composite beam at any amplitude.

Appendices

A. Derivation of Bending (EI), Torsional
(GJ), Bending-Torsion Coupling (C), and
Shear (kAG) Rigidities

Based on CLT, the constitutive equations of the laminate
relating the stress resultant and the curvatures can be written
as

⎧

⎪
⎨

⎪

⎩

Mx

My

Mxy

⎫

⎪
⎬

⎪

⎭

=

⎡

⎢

⎢

⎢

⎣

D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤

⎥

⎥

⎥

⎦

⎧

⎪
⎨

⎪

⎩

kx
ky
kxy

⎫

⎪
⎬

⎪

⎭

, (A.1)

where Dij are anisotropic stiffness coefficients which are
defined by

Dij =
∫ t/2

−t/2
Qijz

2 dz,
(

i, j = 1, 2, 6
)

(A.2)

where Qij and t are the transformed material constants
[19] and thickness of the beam. The moment My can be
considered to be zero. Then ky can be eliminated from (A.1)
to give

{

Mx

Mxy

}

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

D11 − D12
2

D22
D16 − D12D26

D22

D16 − D12D26

D22
D66 − D26

2

D22

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

{

kx
kxy

}

.

(A.3)

The bending Mx and twisting Mxy moments can be related
to the resultant bending (M) and torsional (T) moments as
follows [20]:

M = −bMx , T = 2bMxy . (A.4)

Also, the curvatures kx and kxy can be related to the bending
slope θ′ and twist rate ψ′ so that [20]

kx = −θ′, kxy = 2ψ′. (A.5)

Thus, the expressions for M and T are given by

{

M
T

}

= b

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣
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2

D22
2
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D22

)

2
(
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D22

)

4

(
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2
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)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

{

θ′

ψ′

}

.

(A.6)
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Figure 4: Variation of the frequency ratio versus the angle of orientation for the angle-ply LCB[θ,−θ,−θ, θ] at two slenderness ratios.
(− : wmax = 1, −− : wmax = 2, − ·− : wmax = 5).

The common relationship between the bending M and tor-
sional T moments with the bending slope θ′ and twist rate ψ′

are as follows:

{

M
T

}

=
⎡

⎣

EI C

C GJ

⎤

⎦

{

θ′

ψ′

}

. (A.7)

An element-by-element comparison of (A.6) and (A.7), we
obtain

EI = b

(

D11 − D12
2

D22

)

, C = 2b
(

D16 − D12D26

D22

)

,

GJ = 4b

(

D66 − D26
2

D22

)

.

(A.8)

The transverse shear force-strain relation for the LCB can be
expressed as

Qxz = kb

(
∫ t/2

−t/2
Q55 dẑ

)

γxz = kAG γxz , (A.9)

where:

kAG = kb
∫ t/2

−t/2
Q55 dẑ. (A.10)

B. An Overview of Homotopy Analysis
Method (HAM)

For convenience of the reader, we will first present a brief
description of the HAM [21]. Consider the following non-
linear homogeneous differential equations:

N[u(t)] = 0, (B.1)
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Figure 5: Effects of shear deformation and rotary inertia on the
buckling load ratio versus amplitude ratio for the [0/90/90/0] con-
figuration.

where N is nonlinear operators, t denotes the independent
variable, and u(t) = 0 are unknown functions.

Liao constructed the so-called zero-order deformation
equation as [21]

(

1− p
)

L
[

φ
(

t; p
) − u0(t)

] = p�h(t)N
[

φ
(

t; p
)]

, (B.2)

where p ∈ [0, 1] is an embedding parameter, � are nonzero
auxiliary functions, h(t) are nonzero auxiliary function, L is
an auxiliary linear operator, u0(t) are initial guesses of u(t),
and φ(t; p) are unknown functions. As p increases from 0
to 1, the φ(t; p) varies from the initial approximation to the
exact solution. In other words, φ(t; 0) = u0(t) and φ(t; 1) =
u(t).

The deformation equation (B.2) can provide us with a
family of approximation series whose convergence region
depends upon the auxiliary parameter � and the auxiliary
function h(t). More importantly, this provides us with a
simple way to adjust and control the convergence regions and
rates of approximation series.

Differentiating once more from (B.2) with respect to the
embedding parameter p and then setting p = 0, we obtain
the first-order deformation equation as

L[u1] = �h(t)N
[

φ
(

t; p
)]

p=0 (B.3)

which gives the first-order approximation for the u(t) [21].
The higher order approximation of the solution can be
obtained by calculating the m-order (m > 1) deformation
equation which can be calculated by differentiating (B.3) m
times with respect to the p and then setting p = 0 and
finally dividing them by m! [21]. Therefore, the mth-order
deformation equation can be obtained as follows:

L[um(t)− um−1(t)] = �h(t)Rm
(

�um−1, . . . ,�um−1
)

, (B.4)

where (�um−1, . . . ,�um−1) and Rm(�um−1, . . . ,�um−1) are defined
as

Rm
(

�um−1, . . . ,�um−1
) = 1

(m− 1)!
dm−1N

[

φ
(

t; p
)]

dpm−1

∣

∣

∣

∣

∣

q=0

�um−1 = {u0,u1,u2, . . . ,um−1}
,

(B.5)

subjected to the following initial conditions:

um(0) = 0, u̇m(0) = 0. (B.6)

To solve (B.2), we employ Taylor expansion series for φ(t; p)
as

φ
(

t; p
) = φ(t; 0) +

∞
∑

m=1

1
m!

(

∂mφ
(

t; p
)

∂pm

)∣

∣

∣

∣

∣

p=0

pm =⇒ u(t)

= u0(t) +
∞
∑

m=1

um(t)pm ,

(B.7)

where um(t) is called the mth-order derivative of unknown
function φ(t; p).
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