71 research outputs found
Integrating invasion and disease in the risk assessment of live bird trade.
AimInternational trade in plants and animals generates significant economic benefits. It also leads to substantial unintended impacts when introduced species become invasive, causing environmental disturbance or transmitting diseases that affect people, livestock, other wildlife or the environment. Policy responses are usually only implemented after these species become established and damages are already incurred. International agreements to control trade are likewise usually based on selection of species with known impacts. We aim to further develop quantitative invasive species risk assessment for bird imports and extend the tool to explicitly address disease threats.LocationUnited States of America.MethodsWe use a two-step approach for rapid risk assessment based on the expected biological risks due to both the environmental and health impact of a potentially invasive wildlife species in trade. We assess establishment probability based on a model informed by historical observations and then construct a model of emerging infectious disease threat based on economic and ecological characteristics of the exporting country.ResultsWe illustrate how our rapid assessment tool can be used to identify high-priority species for regulation based on a combination of the threat they pose for becoming established and vectoring emerging infectious diseases.Main conclusionsOur approach can be executed for a species in a matter of days and is nested in an economic decision-making framework for determining whether the biological risk is justified by trade benefits
Faddeev-Volkov solution of the Yang-Baxter Equation and Discrete Conformal Symmetry
The Faddeev-Volkov solution of the star-triangle relation is connected with
the modular double of the quantum group U_q(sl_2). It defines an Ising-type
lattice model with positive Boltzmann weights where the spin variables take
continuous values on the real line. The free energy of the model is exactly
calculated in the thermodynamic limit. The model describes quantum fluctuations
of circle patterns and the associated discrete conformal transformations
connected with the Thurston's discrete analogue of the Riemann mappings
theorem. In particular, in the quasi-classical limit the model precisely
describe the geometry of integrable circle patterns with prescribed
intersection angles.Comment: 26 pages, 18 color figures, minor correction
A discrete Laplace-Beltrami operator for simplicial surfaces
We define a discrete Laplace-Beltrami operator for simplicial surfaces. It
depends only on the intrinsic geometry of the surface and its edge weights are
positive. Our Laplace operator is similar to the well known finite-elements
Laplacian (the so called ``cotan formula'') except that it is based on the
intrinsic Delaunay triangulation of the simplicial surface. This leads to new
definitions of discrete harmonic functions, discrete mean curvature, and
discrete minimal surfaces. The definition of the discrete Laplace-Beltrami
operator depends on the existence and uniqueness of Delaunay tessellations in
piecewise flat surfaces. While the existence is known, we prove the uniqueness.
Using Rippa's Theorem we show that, as claimed, Musin's harmonic index provides
an optimality criterion for Delaunay triangulations, and this can be used to
prove that the edge flipping algorithm terminates also in the setting of
piecewise flat surfaces.Comment: 18 pages, 6 vector graphics figures. v2: Section 2 on Delaunay
triangulations of piecewise flat surfaces revised and expanded. References
added. Some minor changes, typos corrected. v3: fixed inaccuracies in
discussion of flip algorithm, corrected attributions, added references, some
minor revision to improve expositio
A new doubly discrete analogue of smoke ring flow and the real time simulation of fluid flow
Modelling incompressible ideal fluids as a finite collection of vortex
filaments is important in physics (super-fluidity, models for the onset of
turbulence) as well as for numerical algorithms used in computer graphics for
the real time simulation of smoke. Here we introduce a time-discrete evolution
equation for arbitrary closed polygons in 3-space that is a discretisation of
the localised induction approximation of filament motion. This discretisation
shares with its continuum limit the property that it is a completely integrable
system. We apply this polygon evolution to a significant improvement of the
numerical algorithms used in Computer Graphics.Comment: 15 pages, 3 figure
Political economy of renewable resource federalism
Author Posting. © Ecological Society of America, 2021. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 00 (2021): e2276, doi:10.1002/eap.2276.The authority to manage natural capital often follows political boundaries rather than ecological. This mismatch can lead to unsustainable outcomes, as spillovers from one management area to the next may create adverse incentives for local decision making, even within a single country. At the same time, one‐size‐fits‐all approaches of federal (centralized) authority can fail to respond to state (decentralized) heterogeneity and can result in inefficient economic or detrimental ecological outcomes. Here we utilize a spatially explicit coupled natural–human system model of a fishery to illuminate trade‐offs posed by the choice between federal vs. state control of renewable resources. We solve for the dynamics of fishing effort and fish stocks that result from different approaches to federal management that vary in terms of flexibility. Adapting numerical methods from engineering, we also solve for the open‐loop Nash equilibrium characterizing state management outcomes, where each state anticipates and responds to the choices of the others. We consider traditional federalism questions (state vs. federal management) as well as more contemporary questions about the economic and ecological impacts of shifting regulatory authority from one level to another. The key mechanisms behind the trade‐offs include whether differences in local conditions are driven by biological or economic mechanisms; degree of flexibility embedded in the federal management; the spatial and temporal distribution of economic returns across states; and the status‐quo management type. While simple rules‐of‐thumb are elusive, our analysis reveals the complex political economy dimensions of renewable resource federalism.This work was partially supported through the Ecological Federalism working group of the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation through NSF Award (No. DBI‐1300426), with additional support from the Howard H. Baker Jr. Center for Public Policy and The University of Tennessee, Knoxville. M. G. Neubert acknowledges support from the U.S. National Science Foundation (DEB‐1558904) and from the J. Seward Johnson Endowment in support of the Woods Hole Oceanographic Institution’s Marine Policy Center. We would like to thank seminar participants at Oregon State University, Nature Policy Lab at U.C. Davis, and the 2019 Association of Environmental and Resource Economists Summer Conference for valuable comments and suggestions on earlier versions of this research
There is no triangulation of the torus with vertex degrees 5, 6, ..., 6, 7 and related results: Geometric proofs for combinatorial theorems
There is no 5,7-triangulation of the torus, that is, no triangulation with
exactly two exceptional vertices, of degree 5 and 7. Similarly, there is no
3,5-quadrangulation. The vertices of a 2,4-hexangulation of the torus cannot be
bicolored. Similar statements hold for 4,8-triangulations and
2,6-quadrangulations. We prove these results, of which the first two are known
and the others seem to be new, as corollaries of a theorem on the holonomy
group of a euclidean cone metric on the torus with just two cone points. We
provide two proofs of this theorem: One argument is metric in nature, the other
relies on the induced conformal structure and proceeds by invoking the residue
theorem. Similar methods can be used to prove a theorem of Dress on infinite
triangulations of the plane with exactly two irregular vertices. The
non-existence results for torus decompositions provide infinite families of
graphs which cannot be embedded in the torus.Comment: 14 pages, 11 figures, only minor changes from first version, to
appear in Geometriae Dedicat
Climate-smart agriculture global research agenda: Scientific basis for action
Background: Climate-smart agriculture (CSA) addresses the challenge of meeting the growing demand for food, fibre and fuel, despite the changing climate and fewer opportunities for agricultural expansion on additional lands. CSA focuses on contributing to economic development, poverty reduction and food security; maintaining and enhancing the productivity and resilience of natural and agricultural ecosystem functions, thus building natural capital; and reducing trade-offs involved in meeting these goals. Current gaps in knowledge, work within CSA, and agendas for interdisciplinary research and science-based actions identified at the 2013 Global Science Conference on Climate-Smart Agriculture (Davis, CA, USA) are described here within three themes: (1) farm and food systems, (2) landscape and regional issues and (3) institutional and policy aspects. The first two themes comprise crop physiology and genetics, mitigation and adaptation for livestock and agriculture, barriers to adoption of CSA practices, climate risk management and energy and biofuels (theme 1); and modelling adaptation and uncertainty, achieving multifunctionality, food and fishery systems, forest biodiversity and ecosystem services, rural migration from climate change and metrics (theme 2). Theme 3 comprises designing research that bridges disciplines, integrating stakeholder input to directly link science, action and governance. Outcomes: In addition to interdisciplinary research among these themes, imperatives include developing (1) models that include adaptation and transformation at either the farm or landscape level; (2) capacity approaches to examine multifunctional solutions for agronomic, ecological and socioeconomic challenges; (3) scenarios that are validated by direct evidence and metrics to support behaviours that foster resilience and natural capital; (4) reductions in the risk that can present formidable barriers for farmers during adoption of new technology and practices; and (5) an understanding of how climate affects the rural labour force, land tenure and cultural integrity, and thus the stability of food production. Effective work in CSA will involve stakeholders, address governance issues, examine uncertainties, incorporate social benefits with technological change, and establish climate finance within a green development framework. Here, the socioecological approach is intended to reduce development controversies associated with CSA and to identify technologies, policies and approaches leading to sustainable food production and consumption patterns in a changing climate
Drivers of future alien species impacts: an expert‐based assessment
Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio‐economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid‐21st century. Based on responses from 36 experts in biological invasions, moderate (20%–30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions—transport, climate change and socio‐economic change—were predicted to significantly affect future impacts of alien species on biodiversity even under a best‐case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best‐case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post‐2020 Framework of the Convention on Biological Diversity
- …