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Abstract

We define a discrete Laplace-Beltrami operator for simplicial sur-
faces (Definition 16). It depends only on the intrinsic geometry of the
surface and its edge weights are positive. Our Laplace operator is sim-
ilar to the well known finite-elements Laplacian (the so called “cotan
formula”) except that it is based on the intrinsic Delaunay triangula-
tion of the simplicial surface. This leads to new definitions of discrete
harmonic functions, discrete mean curvature, and discrete minimal sur-
faces. The definition of the discrete Laplace-Beltrami operator depends
on the existence and uniqueness of Delaunay tessellations in piecewise
flat surfaces. While the existence is known, we prove the uniqueness.
Using Rippa’s Theorem we show that, as claimed, Musin’s harmonic
index provides an optimality criterion for Delaunay triangulations, and
this can be used to prove that the edge flipping algorithm terminates
also in the setting of piecewise flat surfaces.

Keywords: Laplace operator, Delaunay triangulation, Dirichlet energy,
simplicial surfaces, discrete differential geometry

1 Dirichlet energy of piecewise linear functions

Let S be a simplicial surface in 3-dimensional Euclidean space, i.e. a geomet-
ric simplicial complex in R3 whose carrier S is a 2-dimensional submanifold,

Research for this article was supported by the DFG Research Unit 565 “Polyhedral

Surfaces” and the DFG Research Center Matheon “Mathematics for key technologies”

in Berlin.

1



possibly with boundary. We assume S to be finite. Let V = {x1, . . . , x|V |},
E, and F be the sets of vertices, edges and (triangular) faces of S. Let
f : S → R be a piecewise linear (PL) function on S (linear on each simplex
of S). Then the gradient ∇f is constant on each triangle. The Dirichlet
energy E(f) = 1

2

∫

S ‖∇f‖2 is

E(f) = 1
2

∑

(xi,xj)∈E

wij (f(xi) − f(xj))
2,

where the edge weights are

wij =

{

1
2(cot αij + cot αji) for interior edges
1
2 cot αij for boundary edges

and αij, αji are the angle(s) opposite edge (xi, xj) in the adjacent trian-
gle(s) (see Figure 1). This formula was, it seems, first derived by Duf-
fin [7], who considers triangulated planar regions. It follows (by sum-
mation over the triangles) from the observation that the Dirichlet energy
of a linear function on a triangle (x1, x2, x3) with angles α1, α2, α3 is
E(f|(x1,x2,x3)) = 1

4

∑

i∈Z/3Z cot αi (f(xi+1) − f(xi+2))
2.

xi

xj

αij

αji

Figure 1: The α-angles of an internal edge.

In analogy to the smooth case, the Laplace operator is defined as the
gradient of the Dirichlet energy. (We identify the vector space of PL func-
tions S → R with the the vector space RV of functions on the vertices.) By
differentiating E(f) with respect to the value of f at a vertex xi ∈ V one
obtains the “cotan formula” for the Laplace operator:

∆f(xi) =
∑

xj∈V :(xi,xj)∈E

wij (f(xi) − f(xj)).

Dziuk was the first to treat a finite element approach for the Laplace operator
on simplicial surfaces, but without stating the cotan formula explicitely [9].
It seems to have been rediscovered by Pinkall and Polthier in their inves-
tigation of discrete minimal surfaces [17], and turned out to be extremely
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important in geometry processing where it found numerous applications,
e.g. [6], [4] to name but two. In particular, harmonic parameterizations
u : V → R2 are used in computer graphics for texture mapping. The cotan-
formula also forms the basis for a theory of discrete holomorphic functions
and discrete Riemann surfaces [8] [15].

Two important disadvantages of this definition of a discrete Laplace
operator are:

1. The weights may be negative. The properties of the discrete Laplace
operator with positive weights (wij > 0) are analogous to the properties
of the classical Laplace-Beltrami operator on a surface with Riemannian
metric. In particular the maximum principle holds. But some weights wij

may be negative, and this leads to unpleasant phenomena: The maximum
principle does not hold. As a consequence, a vertex of a discrete minimal
surface (as defined by Pinkall & Polthier [17]) may not be contained in
the convex hull of its neighbors. In texture mapping applications negative
weights are undesirable because they lead to “flipped triangles”. In practice
various tricks are used to avoid negative weights.

2. The definition is not purely intrinsic. The classical Laplace-Beltrami
operator is intrinsic to a Riemannian manifold: It depends only on the Rie-
mannian metric. This is not the case with the discrete Laplace operator
defined above. Two simplicial surfaces which are isometric but which are
not triangulated in the same way give in general rise to different Laplace op-
erators. As the simplest example, consider the two triangulations of a planar
quadrilateral. They lead to different discrete Laplace operators. (Planarity
is not what causes the problem since the quadrilateral may also be folded
along either of its diagonals.)

The key idea of this paper is that one can avoid both the above shortcom-
ings by using the intrinsic Delaunay triangulation of the surface S to define
the discrete Laplace operator (Definition 16) instead of the triangulation
that comes from the simplicial complex S.

2 Delaunay triangulations of piecewise flat sur-

faces

This section provides the necessary background on Delaunay tessellations
of piecewise flat surfaces. We decided to give a detailed exposition because
not all necessary proofs can be found elsewhere.

The concept of a Delaunay triangulation in n-dimensional Euclidean
space goes back to Delaunay [5]. Piecewise flat surfaces (Definition 1) were
studied by (his student) Alexandrov [1] and more recently by Troyanov [20].
The idea of a Delaunay triangulation of a piecewise flat surface was ap-
parently first considered by Rivin [19, Sec. 10]. The vertex set of the De-
launay triangulation is assumed to contain the set of cone points of the
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piecewise flat surface, so that the surface is flat away from the vertices.
(This is very different from considering Delaunay triangulations in surfaces
with Riemannian metric [13].) Rivin claims but does not prove an existence
and uniqueness theorem for Delaunay triangulations in piecewise flat sur-
faces. His proof that the edge flipping algorithm terminates is flawed (see
the discussion after Proposition 12 below). A correct proof was given by
Indermitte et al. [11]. (They seem to miss a small detail, a topological ob-
struction to edge-flipability. See our proof of Proposition 11.) Furthermore,
for our definition of the discrete Laplace-Beltrami operator we also need
the uniqueness of the Delaunay tessellation, and this question has not been
addressed properly. Rivin and Indermitte et al. define Delaunay triangula-
tions by the local Delaunay criterion (see Definition 8), and infer existence
via the edge flipping algorithm (see Proposition 12). To obtain uniqueness,
we will define the Delaunay tessellation (whose faces are generically but not
always triangular) via a global empty circle criterion (Definition 3). In a
piecewise flat surface, the “empty circumcircles” are immersed empty disks
(Definition 2) which may overlap themselves. Consequently, some work is
required to show that this actually defines a (not necessarily regular) cell
decomposition of the surface. Uniqueness, on the other hand, is immediate
from this definition. We will also show that the local Delaunay criterion im-
plies the global empty circumcircle condition. A Delaunay triangulation is
obtained from the Delaunay tessellation by triangulating the non-triangular
faces. It follows that a Delaunay triangulation, while in general not unique,
differs from another Delaunay triangulation only by edges with vanishing
cot-weights. This is important because it means that the discrete Laplace-
Beltrami operator that will be defined in Section 3 depends only on the
intrinsic geometry of the surface.

Definition 1. A piecewise flat surface (PF surface) (S, d) is a 2-dimensional
differential manifold S, possibly with boundary, equipped with a metric d
which is flat except at isolated points, the cone points, where d has cone-like
singularities.

In other words, every interior point of a piecewise flat surface has a
neighborhood which is isometric to either a neighborhood of the Euclidean
plane or to a neighborhood of the apex of a Euclidean cone. The cone
angle at the apex may be greater than 2π. (For a more detailed definition
of closed PF surfaces see Troyanov [20].) In this paper, we consider only
compact surfaces and we require the boundary (if there is a boundary) to
be piecewise geodesic. (The interior angle at a corner of the boundary may
be greater than 2π.)

A tessellation of a PF surface is a cell decomposition such that the faces
are Euclidean polygons which are glued together along their edges. This
implies that the cone points and the corners of the boundary are vertices of
the cell decomposition. A triangulation is a tessellation where the faces are
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triangles. For the following it is essential that we do not require tessella-
tions (and in particular triangulations) to be a regular cell complexes, i.e. a
glueing homomorphism may identify points on the boundary of a cell. For
example, it is allowed that two edges of a face may be glued to each other;
and an edge may connect a vertex with itself. A forteriori, we do not require
a tessellation to be strongly regular, i.e. the intersection of two closed cells
may not be a single closed cell.

Remark. From the intrinsic point of view, the carrier S of a simplicial surface
S with the metric induced by the ambient Euclidean space is a piecewise
flat surface. The simplicial surface S also provides S with a triangulation
whose vertex set includes the cone points and the corners of the bound-
ary. However, this triangulation is not intrinsically distinguished from other
triangulations with the same vertex set.

First, we will consider surfaces without boundary. To define the Delau-
nay tessellation of a PF surface in terms of empty disks, we must allow an
empty disk to overlap with itself:

Definition 2 (immersed empty disk). Let (S, d) be a compact PF surface
without boundary, and let V ⊂ S be a finite set of points which contains all
cone points. An immersed empty disk is continuous map ϕ : D̄ → S, where
D is an open round disk in the Euclidean plane and D̄ is its closure, such
that the restriction ϕ|D is an isometric immersion (i.e. every p ∈ D has a
neighborhood which is mapped isometrically) and ϕ(D) ∩ V = ∅.

Hence any points in ϕ−1(V ) are contained in the boundary of D: ϕ−1(V ) ⊂
∂D.

Definition 3 (Delaunay tessellation, no boundary). Let (S, d) be a
compact PF surface without boundary, and let V ⊂ S be a finite set of
points which contains all cone points. The Delaunay tessellation of (S, d)
on the vertex set V is the cell decomposition with the following cells: A
subset C ⊂ S is a closed cell of the Delaunay tessellation iff there exists an
immersed empty disk ϕ : D̄ → S such that ϕ−1(V ) is non-empty and C is
the image of the convex hull of ϕ−1(V ): C = ϕ(conv ϕ−1(V )). The cell-
attaching map is ϕ|conv ϕ−1(V ); and the cell is a 0-cell (vertex), 1-cell (edge),
or 2-cell (face) if ϕ−1(V ) contains one, two, or more points; respectively.

Proposition 4. The Delaunay tessellation as defined above is really a tes-
sellation of (S, d).

Proof. Let us first remark that the vertex set of the Delaunay tessellation
is obviously V . An edge e is a geodesic segment such that there exists an
immersed empty disk ϕ : D̄ → S with ϕ−1(V ) containing exactly two points,
ϕ−1(V ) = {p1, p2} such that e = ϕ([p1, p2]), where [p1, p2] is the line segment
joining p1 and p2 in D. That the vertices and edges form a 1-dimensional
cell complex then follows from Lemma 5 below.
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p1

x1

D

q

x2

p2

Figure 2: The Intersecting Chord Theorem says that ‖p1 − q‖ · ‖p2 − q‖ =
‖x1 − q‖ · ‖x2 − q‖.

Then we have to show that the open faces are indeed homeomorphic
to open disks. (A cell attaching map ϕ : |conv ϕ−1(V ) is a priori only an
immersion of the interior of the domain.) This follows from Lemma 6.

It is comparatively easy to see that the cell attaching homeomorphism
ϕ maps the boundary ∂ conv{p1, p2, . . . , pn} into the 1-skeleton; and that
edges do not intersect open faces. We omit the details.

Finally, Lemma 7 asserts that every point in S is contained in a closed
cell.

Lemma 5. The edges do not cross each other or themselves.

Proof. Let e = ϕ([p1, p2]) and ẽ = ϕ̃([p̃1, p̃2]) be edges contained in the

empty immersed disks ϕ : D̄ → S and ϕ̃ : ¯̃D → S, respectively, such
that p1, p2 are the only points in ϕ−1(V ) and p̃1, p̃2 are the only points in
ϕ̃−1(V ). Suppose e and ẽ have an interior point in common: ϕ(q) = ϕ̃(q̃)
with q ∈ (p1, p2) and q̃ ∈ (p̃1, p̃2). We are going to show that

ϕ−1(ẽ) = [p1, p2]. (1)

Since ϕ̃(p̃1), ϕ̃(p̃2) 6∈ ϕ(D) the Intersecting Chord Theorem implies

‖p1 − q‖ · ‖p2 − q‖ ≤ ‖p̃1 − q̃‖ · ‖p̃1 − q̃‖,

where ‖.‖ denotes the Euclidean norm; see Figure 2. The opposite inequality
follows equally. Hence ϕ−1(ϕ̃(p̃1)) and ϕ−1(ϕ̃(p̃2)) must be contained in ∂D.
Since p1 and p2 are the only points in ϕ−1(V ), this implies (1).

Lemma 6. Let ϕ : D̄ → S be an immersed empty disk and suppose ϕ−1(V ) =
{p1, p2, . . . , pn} with n ≥ 3. Let P = conv{p1, p2, . . . , pn}. Then the restric-
tion ϕ|int P of ϕ to the interior of P is injective (and hence a homeomorphism
int P → ϕ(int P )).
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p̃1
p̃3

P̃
q̃

p̃2

D̃

p2

D

p1
P

q

p3

Figure 3: The dashed lines mark the boundaries of of the circular segments
conv((∂D) \ D̃) and conv((∂D̃) \ D).

Proof. Suppose q ∈ int P and q̃ ∈ D with q 6= q̃ but ϕ(q) = ϕ(q̃). We will
show that q̃ 6∈ int P .

Because ϕ|D is an isometric immersion, there is a neighborhood q ∋ U ⊂
D and an isometry T of the Euclidean plane such that T (q) = q̃, T (U) ⊂ D,

and ϕ(T (x)) = ϕ(x) for all x ∈ U . Let D̃ = T (D) and ϕ̃ = ϕ◦T−1 : ¯̃D → S.
Since ϕ and ϕ̃ agree on the intersection D ∩ D̃, there is a continuous map

ϕ̂ : D ∪ D̃ → S such that ϕ̂|D̄ = ϕ and ϕ̂| ¯̃D
= ϕ̃.

Now let p̃i = T (pi) (i = 1, . . . n) and P̃ = T (P ) = conv{p̃1, p̃2, . . . , p̃n}.
Then P and P̃ have no common interior points: intP ∩ int P̃ = ∅. Indeed,
since D and D̃ are “empty”, {p1, p2, . . . , pn} ⊂ (∂D)\D̃ and {p̃1, p̃2, . . . , p̃n} ⊂
(∂D̃) \ D. Hence P ⊂ conv((∂D) \ D̃) and P̃ ⊂ conv((∂D̃) \ D). But the
circular segments conv((∂D)\D̃) and conv((∂D̃)\D) have no interior points
in common. (See Figure 3.)

Now q̃ ∈ int P̃ implies q̃ 6∈ intP .

Lemma 7. Every point x ∈ S is contained in a closed cell.

Proof. Consider two immersed disks ϕ : D̄ → S, ϕ̃ : ˜̄D → S as equivalent if
they differ only by a change of parameter, i.e. if ϕ̃ = ϕ◦T for some isometry
of the Euclidean plane. The manifold of equivalence classes is parameterized
by the set

D =
{

(c, r) ∈ S ×R>0

∣

∣ d(c, V ) ≥ r
}

of center/radius pairs. If we adjoin degenerated immersed empty disks with
radius 0, we obtain a compact manifold with boundary, parameterized by

D̄ =
{

(c, r) ∈ S ×R≥0

∣

∣ d(c, V ) ≥ r
}

.

For a point x ∈ S the power function with respect to x is the continuous
function

powx : D̄ → R, powx(c, r) =
(

d(c, x)
)2

− r2.
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p

p2

p1

p3

p4

H

D

D̃

Figure 4: If p is not contained in the convex hull of ϕ−1(V ) = {p1, . . . , pn},
then there is another immersed empty disk with smaller power. (See proof
of Lemma 7.)

If ϕ : D̄ → S is an immersed empty disk with center c and radius r,
then powx(c, r) is smaller than, equal to, or greater than zero depending
on whether x ∈ ϕ(D), x ∈ ∂ϕ(D), or x ∈ S \ ϕ(D̄).

Let x ∈ S. We have to show that x is contained in some closed cell.
If x ∈ V this is clear, because the points in V are 0-cells. So assume
x ∈ S \ V . Since powx is continuous on the compact set D̄, there is a
(cmin, rmin) ∈ D̄ where powx attains its minimum. Since x 6∈ V , there is an
empty disk containing x and hence powx(cmin, rmin) < 0. Let ϕ : D̄ → S be
an immersed empty disk with center cmin and radius rmin; i.e. D is a disk inR2 with center m ∈ R2 and radius rmin and ϕ(m) = cmin. There is a p ∈ D
with ϕ(p) = x and ‖p − m‖ = d(x, cmin). We show by contradiction that
p ∈ conv ϕ−1(V ).

Suppose the opposite is true: p 6∈ conv ϕ−1(V ). Then there exists a
closed half-space H ⊂ R2 with ϕ−1(V ) ⊂ H but p 6∈ H. In that case
there exists another immersed empty disk ϕ̃ : D̃ → M with D \ D̃ ⊂ intH,
D̃ \D ⊂ R2 \H, and ϕ|D∩D̃ = ϕ̃|D∩D̃ (see Figure 4). Let m̃ and r̃ be center

and radius of D̃. Then

‖p − m̃‖2 − r̃2 < ‖p − m‖2 − r2.

(To see this, note that q 7→ (‖q − m̃‖2 − r̃2) − (‖q − m‖2 − r2) is an affine
linear function R2 → R, which vanishes on ∂H and is positive on intH,
and negative on R2 \H.) This implies powx(c̃, r̃) < powx(cmin, rmin), where
c̃ = ϕ̃(m̃). This contradicts the assumption that powx attains its minimum
on (cmin, rmin).

Delaunay tessellations of PF surfaces with boundary. Now let (S, d)
be a compact PF manifold with piecewise geodesic boundary. Let V ⊂ S

8



be a finite set of points which contains all cone points and all corners of the
boundary. The boundary is then the union of geodesic segments connecting
points in V but containing no points of V in their interior. Each connected
component of the boundary is a closed geodesic polygon with vertices in V .
To each such boundary polygon glue a PF surface obtained by cyclicly gluing
together the appropriate number of isosceles triangles with appropriate base
lengths and legs of length R > 0. Each of these caps contains a special point
where the triangle apices are glued together. It is in general a cone point.
The result of closing all wholes with such caps is a closed PF surface (Ŝ, d).
Let V̂ be the union of V and the set of special points of the caps. If R is
chosen large enough, then the isosceles triangles in the caps will be faces of
the Delaunay tessellation of (Ŝ, d) with respect to V̂ . (This is so because if
R is large enough, the immersed circumdisks intersect S in lunes which are
so small that they are empty.) The Delaunay tessellation of the bounded
surface (S, d) with respect to V is defined to be the cell complex obtained
by removing these triangles.

Delaunay triangulations. A Delaunay triangulation is a triangulation
obtained from a Delaunay tessellation by triangulating all non-triangular
faces. A Delaunay triangulation is characterized by the empty circumcircle
property: A tessellation of (S, d) on the vertex set V is a Delaunay triangula-
tion iff for each face f there exists an immersed empty disk ϕ : D̄ → S such
that there are three points p1, p2, p3 ∈ ϕ−1(V ) with f = ϕ(conv{p1, p2, p3}).
(But there may be more than three points in ϕ−1(V ).)

In Proposition 10 we give a more local characterization of Delaunay
triangulations.

Definition 8. Let T be a geodesic triangulation of (S, d) with vertex set
V , and let e be an interior edge of T . Since all faces of T are isometric to
Euclidean triangles we can isometrically unfold to the plane the two triangles
of T that are adjacent to e. We say that e is locally Delaunay if the vertices
of the two unfolded triangles are not contained inside the circumcircles of
these triangles.

For our investigation of discrete Laplace operators we will need the fol-
lowing characterization of Delaunay edges.

Lemma 9. An interior edge e of a triangulation T of a piecewise flat surface
(S, d) is locally Delaunay if and only if the sum of the angles opposite e in
the adjacent triangles does not exceed π.

This follows immediately from the fact that opposite angles in a circular
quadrilateral sum to π.

Clearly all interior edges of a Delaunay triangulation are locally Delau-
nay. This property actually characterizes Delaunay triangulations:
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c0

τ0

τ1

τ2

τ3

τ4
x3

x2

x4

x1
xi+1τi τi+1

gi,i+1

Hi,i+1

ci ci+1

Figure 5: Left: The layed out triangles. Right: The power line of ci and ci+1

is gi,i+1. Since the edge ei,i+1 is assumed to be Delaunay, pci
(x) ≥ pci+1

(x)
in Hi,i+1.

Proposition 10. A triangulation T of a piecewise flat surface (S, d) is
a Delaunay triangulation if and only if all interior edges of T are locally
Delaunay.

The following proof is an adaptation of Delaunay’s original argument [5]
for Delaunay triangulations in Rn. (See also Edelsbrunner [10, p. 8] for
a more easily available modern exposition.) Alternatively, one could also
adapt the argument of Aurenhammer and Klein [2] for Delaunay triangula-
tions in the plane.

Proof. If S is a manifold with boundary, construct a closed PF surface by
glueing piecewise flat disks to the boundary components in the manner de-
scribed above. If R is chosen large enough, all edges will be locally Delaunay.
It remains to prove the Proposition for closed PF surfaces.

Suppose that all interior edges of the triangulation T of the closed PF
surface (S, d) are locally Delaunay. We want to show that T is a Delaunay
triangulation. To this end we will show that the empty circumcircle property
holds. Let t0 be a triangle of T . Starting with t0 we develop a part of T
in the Euclidean plane (see Figure 5, left). Begin with a triangle τ0 in
the Euclidean plane that is congruent to t0. Let c0 be the circumcircle of
τ0. Next, lay out congruent copies of the triangles neighboring t0. This
introduces new vertices in the plane, which are on or outside c0 because
the edges of t0 are Delaunay by assumption. Keep laying out neighboring
triangles in the plane at free edges but only if the free edges intersect c0.
(Different layed out triangles may correspond to the same triangle in (S, d).)
Each new triangle introduces a new vertex and we will show that they do
not lie inside c0. Hence, when the layout process stops (when all free edges
do not intersect c0), the triangles simply cover the inside of c0. It follows
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that t0 has an empty circumcircle in (S, d).
Let τ0, τ1, . . . , τn, be a sequence of layed out triangles such that τi and

τi+1 share an edge ei,i+1. Let xi+1 be the vertex opposite ei,i+1 in τi+1.
Assuming that xi is not inside c0 for all i < n we will show that the same
holds for xn. Let gi,i+1 be the straight line containing ei,i+1 and let Hi,i+1

be the half space bounded by gi,i+1 and containing τi+1. Then

(H0,1 ∩ D0) ⊃ (H1,2 ∩ D0) ⊃ . . . ⊃ (Hn−1,n ∩ D0),

where D0 is the open disk bounded by c0. Hence it remains to consider the
case where xn ∈ Hi,i+1 for all i = 0, . . . , n − 1, because otherwise xn 6∈ D0.

Now consider the power of a point x ∈ R2 with respect to a circle c ⊂ R2

with center xc and radius r as a function of x:

pc(x) = ‖x − xc‖
2 − r2.

It is positive, zero, or negative if x lies outside, on, or inside c, respectively.
The power line of two different circles c and c′ is the locus of points x with
pc(x) = pc′(x). It is a straight line because pc(x) − pc′(x) is linear in x.
The power line of two intersecting circles is the line through the intersection
points. Let ci be the circumcircle of τi. Either ci = ci+1 or the power line
of ci and ci+1 is gi,i+1 and

Hi,i+1 = {x : pci
(x) ≥ pci+1

(x)}. (2)

(See Figure 5, right.) Indeed, pci+1
(xi+1) = 0 and since the edge ei,i+1 is

locally Delaunay by assumption, pci
(xi+1) ≥ 0. Hence

pc0(xn) ≥ pc1(xn) ≥ . . . ≥ pcn(xn) = 0,

and therefore xn lies on or outside c0. This concludes the proof.

The edge flipping algorithm may be used to construct a Delaunay trian-
gulation of a piecewise flat surface (S, d) with marked points V ⊂ S:

1. Start with any triangulation T of (S, d) with vertex set V .

2. If all interior edges of T are locally Delaunay, stop.

3. Otherwise there is an interior edge e of T which is not locally Delaunay.
Perform an intrinsic edge flip: Replace e by the other diagonal of the
quadrilateral formed by the two triangles adjacent to e. Go to Step 2.

The following two propositions show that this is indeed an algorithm.

Proposition 11. If an edge is not locally Delaunay, then it can be flipped.
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Proof. In R2, an edge is flipable iff the two adjacent triangles form a convex
quadrilateral. In a PF surface, there is an additional topological obstruction
to flipability: Since the triangulation may not be regular, an edge may be
adjacent to the same triangle on both sides. So suppose the edge e is not
locally Delaunay, i.e. the sum of opposite angles exceeds π. Then there are
two different triangles adjacent to e, because the sum of all angles in one
triangle is π. These two triangles form a Euclidean quadrilateral (possibly
with some of the boundary edges identified with each other), which is convex
by the usual argument. Hence e can be flipped.

Proposition 12 (Indermitte et al. [11]). The edge flipping algorithm
terminates after a finite number of steps.

Together with Proposition 10 this implies that the edge flipping algo-
rithm produces a Delaunay triangulation (in the global empty-circumcircle
sense). To prove Proposition 12, one has to show that the algorithm cannot
loop infinitely. In the setting of planar Delaunay triangulations, it is enough
to define a suitable real valued function on the set of triangulations on the
given vertices which decreases (or increases) with each edge flip. Because
this set of triangulations is finite, the algorithm has to terminate. As a
further consequence such a function attains its minimal (or maximal) value
on the Delaunay triangulations. Several such functions are known, see for
example Lambert [12], Musin [16], Rivin [19, Sec. 10], and the survey arti-
cle [2]. When we consider Delaunay triangulations of PF surfaces, however,
the set of triangulations on the marked points may be infinite. (The fact
that the number of combinatorial types of triangulations is finite [19] is
not sufficient to make the argument.) For example, the surface of a cube
has infinitely many geodesic triangulations on the eight vertices. To prove
Proposition 12 by means of a function which decreases with every flip, one
has to show that it has the following additional property.

Definition 13. Let T be the set of triangulations of a PF surface on a given
set of marked points and let f : T → R. We say that f is proper if for any
M ∈ R the number of triangulations T ∈ T with f(T ) ≤ M is finite.

In their proof of Proposition 12, Indermitte et al. [11] use the sum of
squared circumcircle radii as proper function which decreases with every flip.
(For a proof that it decreases with every flip, they refer to an unpublished
PhD thesis. However, see Musin [16], his Theorem 3 and the following
Lemma, for a hint on how to prove this.) Another possible choice is Musin’s
harmonic index. Below we show that it is proper and decreases with every
flip. The latter fact we deduce from Rippa’s Theorem [18], which is also
of independent interest in connection with the Laplace-Beltrami operator.
Rippa’s proof holds without change also for piecewise flat surfaces.
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Rippa’s Theorem. Let (S, d) be a piecewise flat surface and let V ⊂ S
be a set of marked points which contains the cone points and the corners
of the boundary. Let f : V → R be a function on the marked points. For
each triangulation T of (S, d) with vertex set V let fT : S → R be the PL
interpolation of f that is linear on the faces of the triangulation T .

Suppose T1 is a triangulation with an interior edge e and T2 is obtained
from T1 by flipping e. If the edge e is a Delaunay edge after the flip, i.e. in
T2, then

E(fT1
) ≥ E(fT2

),

where E denotes the Dirichlet energy as in Section 1. Equality holds only if
fT1

= fT2
or if e was also a Delaunay edge in T1.

As a consequence, the minimum of the Dirichlet energy among all pos-
sible triangulations is attained on the Delaunay triangulations (S, d):

min
T

∫

S
| ∇fT |2=

∫

S
| ∇fTD

|2,

where TD is any Delaunay triangulation.
Moreover, for generic f : V → R, this property of Delaunay triangula-

tions is characteristic.

Rippa’s proof is based on the following comparison formula for the
Dirichlet energies of two possible triangulations of a quadrilateral

E(fT1
) − E(fT2

) =
(f1 − f2)

2

2 sin θ

(r1 + r3)(r2 + r4)

r1r2r3r4
(r1r3 − r2r4).

Here T1 and T2 are the two triangulations of the convex quadrilateral Q =
(x1, x2, x3, x4) obtained by addition of the diagonals (x1, x3) and (x2, x4)
respectively, f1 and f2 are the values of fT1

and fT2
at the intersection

point x0 of the diagonals, r1, . . . , r4 are the distances from x0 to the vertices
x1, . . . , x4 of the quadrilateral and θ is the intersection angle of the diagonals.

For a Euclidean triangle t with sides a, b, c and area A, Musin [16] defines
the harmonic index as

hrm(t) =
a2 + b2 + c2

A
.

The harmonic index of a triangulation T with face set F is the sum of the
harmonic indices of all triangles:

hrm(T ) =
∑

t∈F

hrm(t).

Proposition 14. The harmonic index is proper.

13



Proof. In a PF surface, there may be infinitely many geodesic lines connect-
ing two points, but for any L ∈ R only a finite number of them have length
≤ L [11]. Hence there are only a finite number of triangulations of a PF
surface with marked points such that all edges are not longer than L. Now
the Proposition follows from the inequality

hrm(T ) ≥
lmax(T )

Atot
,

where lmax(T ) is the largest length of an edge of T and Atot is the total
area of the PF surface. Indeed, if hrm(T ) ≤ M , then lmax(T ) ≤ MAtot,
and there are only finitely many triangulations satisfying this bound on edge
lengths.

The following theorem was stated by Musin without proof [16].

Theorem 15. With the notation and under the conditions of Rippa’s The-
orem

hrm(T1) ≥ hrm(T2)

and equality holds only if e is a Delaunay edge in T1 as well. This implies
that the harmonic index is minimal for a Delaunay triangulation TD (and
hence for all of them):

min
T

hrm(T ) = hrm(TD).

Proof. The harmonic index of a triangle is

hrm(t) = 4(cot α + cot β + cot γ),

where α, β, γ are the angles of the triangle. (Because the area is A =
1
2aha = 1

2bhb = 1
2chc, where ha, hb, hc are the heights of the triangle; and

a/ha = cot β + cot γ, etc.)
For a triangulation T of (S, d) with vertex set V and x ∈ V let δx,T :

S → R be the function that is linear on the triangles of T , equal to 1 at x,
and equal to 0 at all other marked points in V . Then

∑

x∈V

E(δx,T ) =
1

2

∑

angles α in T

cot α =
1

8
hrm(T ).

Hence the theorem follows from Rippa’s Theorem.

3 The discrete Laplace-Beltrami operator and dis-

crete harmonic functions

We are now in a position to define the discrete Laplace operator on a sim-
plicial surface in an intrinsic way.
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Definition 16. Let S be a simplicial surface with vertex set V and let S be
its carrier, which is a piecewise flat surface. The discrete Laplace-Beltrami
operator ∆ of a simplicial surface S is defined as follows. For a function
f : V → Rn on the vertices, the value of ∆f : V → Rn at xi ∈ V is

∆f(xi) =
∑

xj∈V :(xi,xj)∈ED

ν(xi, xj)(f(xi) − f(xj)), (3)

where ED is the edge set of a Delaunay triangulation of S and the weights
are given by

ν(xi, xj) =

{

1
2 (cot αij + cot αji) for interior edges
1
2 cot αij for boundary edges

. (4)

Here αij (and αji for interior edges) are the angles opposite the edge (xi, xj)
in the adjacent triangles of the Delaunay triangulation (see Figure 1).

The discrete Dirichlet energy of f is

ED =
1

2

∑

(xi,xj)∈ED

ν(xi, xj)(f(xi) − f(xj))
2.

Due to Lemma 9 and the formula cot α + cot β = sin(α+β)
sinα sin β the dis-

crete Laplace operator has non-negative weights. The edges with vanishing
weights are diagonals of non-triangular cells of the Delaunay tessellation.
Erasing such edges in (3) we obtain a discrete Laplace operator on the De-
launay tessellation of S with positive weights ν(x, xi). Moreover, this prop-
erty is characteristic for Delaunay triangulations: Consider a piecewise flat
surface (S, d) with a triangulation T . Denote by ∆T the Laplace operator
of the triangulation T : it is given by the same formula (3) with the weights
νT determined by the triangulation T by the same formulas (4) as for the
Delaunay triangulation. The following observation is elementary.

Proposition 17. The Laplace operator ∆T of the triangulation T has non-
negative weights νT if and only if the triangulation T is Delaunay.

Laplace operators with positive weights on graphs possess properties
analogous to the smooth theory.

Definition 18. A discrete function f : V → Rn on a simplicial surface is
harmonic if ∆f(x) = 0 for all interior vertices x.

Discrete harmonic functions satisfy the maximum principle: A real val-
ued harmonic function attains its maximum on the boundary. This implies:

Proposition 19. For each interior vertex x, the value f(x) of a harmonic
function f : V → Rn lies in the convex hull of the values f(xi) on its
neighbors.
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We conclude this section with some standard facts regarding boundary
value problems for the discrete Laplace operator. Let us fix a subset V∂ ⊂ V
of vertices–which may but need not be the set of boundary vertices–and a
function g : V∂ → R. The problem of finding a function that satisfies
∆f(x) = 0 for x ∈ V \ V∂ and f(x) = g(x) for x ∈ V∂ is called a Dirichlet
boundary value problem. The problem of finding a function that satisfies
∆f(x) = 0 for x ∈ V \ V∂ and ∆f(x) = g(x) for x ∈ V∂ is a Neumann
boundary value problem.

Theorem 20. For arbitrary V∂ and g(x) the solutions of the Dirichlet and
Neumann boundary value problems exist and are unique (up to an additive
constant if V∂ = ∅ and in the Neumann case). The solution minimizes the
Dirichlet energy ED.

Indeed, solutions of the Dirichlet and Neumann boundary value problems
are critical points of the Dirichlet energy. Since the energy is a positive
definite quadratic form, its only critical point is the global minimum.

More complicated boundary conditions, such as so called “natural bound-
ary conditions” (see Desbrun et al. [6]), are also intensively used in geome-
try processing. The corresponding existence and uniqueness results are still
missing.

4 Discrete mean curvature and minimal surfaces

In this section we adapt the definitions of the mean curvature vector for
simplicial surfaces and minimal surfaces originally suggested by Pinkall and
Polthier [17] to the discrete Laplace operator that we introduced in Section 3.

For a smooth immersed surface f : R2 ⊃ U → R3 the mean curvature
vector is given by the formula H = ∆f , where ∆ is the Laplace-Beltrami
operator of the surface. For a simplicial surface we define the mean curvature
vector by the same formula, following [17], but we use a different Laplace
operator:

Definition 21. Let S be a simplicial surface with carrier S. The discrete
mean curvature vector at a vertex x is

H(x) = ∆f(x),

where f : S → R3 is the restriction of the identity map on R3 to S, and ∆
is the discrete Laplace-Beltrami operator of Definition 16.

The discrete mean curvature vector H(x) of a simplicial surface corre-
sponds to the integral of the mean curvature vector of a smooth surface over
a neighborhood of the point x. (Note when we scale the simplicial surface,
H varies as the integral of the mean curvature over some domain.) This
suggests the following alternative definition:
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Definition 22. In the setup of Definition 21, let C(x) be a Voronoi cell
of the vertex x of a simplicial surface. The discrete mean curvature vector
density at x is defined by

H(x) =
∆f(x)

A(C(x))
,

where ∆ is the discrete Laplace-Beltrami operator of Definition 16 and A(C(x))
is the area of the Voronoi cell C(x).

This definition is similar to the definition of mean curvature suggested
by Meyer, Desbrun, Schröder and Barr [14]. Again, the difference is that we
contend that one should use the discrete Laplace-Beltrami operator.

Definition 23 (Wide definition of simplicial minimal surfaces). A
simplicial surface is called minimal if its mean curvature vector vanishes
identically.

Since the embedding f : S → R3 of a simplicial minimal surface is
harmonic, Proposition 19 implies

Proposition 24. Every interior vertex of a simplicial minimal surface lies
in the convex hull of its neighbors.

The following stricter definition is also natural.

Definition 25 (Narrow definition of simplicial minimal surfaces).
A simplicial surface S is called minimal if its mean curvature vector van-
ishes identically and the intrinsic Delaunay triangulation of the carrier of S
coincides with the triangulation induced by the simplicial complex S.

Such a simplicial minimal surface is a critical point of the area functional
under variations of the vertex positions [17]. We would like to note that
there exists also a non-linear theory of discrete minimal surfaces based on
the theory of circle patterns [3].

The mean curvature flow for simplicial surfaces is given by the equation

df

dt
(x) = H(x).

This flow may change the Delaunay triangulation of the surface. At some
moment two Delaunay circles coincide and the diagonal of the corresponding
quadrilateral flips. However, since the weights of the diagonals vanish at the
flip moment, the discrete Laplace-Beltrami operator and mean curvature
vectors are continuous functions of time t.

For the numerical computation of discrete minimal surfaces one should
use the algorithm of [17] with an extra step to adapt the Delaunay triangu-
lation: Start with a simplicial surface S0 which respects the given boundary
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conditions. Calculate the Delaunay triangulation of the carrier S0 and the
weights ν. Find an f : S0 → R3 which respects the boundary conditions
and minimizes the Dirichlet energy (see Definition 16). You may start with
the embedding of S0 as initial guess. You obtain a new simplicial surface S1

which is combinatorially equivalent to S0 but geometrically different. Calcu-
late the Delaunay triangulation and weights ν of S1 and find an f : S1 → R3

that minimizes the Dirichlet energy. Iterate.
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