255 research outputs found

    Variational principles for circle patterns

    Full text link
    A Delaunay cell decomposition of a surface with constant curvature gives rise to a circle pattern, consisting of the circles which are circumscribed to the facets. We treat the problem whether there exists a Delaunay cell decomposition for a given (topological) cell decomposition and given intersection angles of the circles, whether it is unique and how it may be constructed. Somewhat more generally, we allow cone-like singularities in the centers and intersection points of the circles. We prove existence and uniqueness theorems for the solution of the circle pattern problem using a variational principle. The functionals (one for the euclidean, one for the hyperbolic case) are convex functions of the radii of the circles. The analogous functional for the spherical case is not convex, hence this case is treated by stereographic projection to the plane. From the existence and uniqueness of circle patterns in the sphere, we derive a strengthened version of Steinitz' theorem on the geometric realizability of abstract polyhedra. We derive the variational principles of Colin de Verdi\`ere, Br\"agger, and Rivin for circle packings and circle patterns from our variational principles. In the case of Br\"agger's and Rivin's functionals. Leibon's functional for hyperbolic circle patterns cannot be derived directly from our functionals. But we construct yet another functional from which both Leibon's and our functionals can be derived. We present Java software to compute and visualize circle patterns.Comment: PhD thesis, iv+94 pages, many figures (mostly vector graphics

    Emissions Targets and the Real Business Cycle: Intensity Targets versus Caps or Taxes

    Get PDF
    For reducing greenhouse gas emissions, intensity targets are attracting interest as a flexible mechanism that would better allow for economic growth than emissions caps. For the same expected emissions, however, the economic responses to unexpected productivity shocks differ. Using a real business cycle model, we find that a cap dampens the effects of productivity shocks in the economy. An emissions tax leads to the same expected outcomes as a cap but with greater volatility. Certainty-equivalent intensity targets maintain higher levels of labor, capital, and output than other policies, with lower expected costs and no more volatility than with no policy.emissions tax, cap-and-trade, intensity target, business cycle

    Emissions Targets and the Real Business Cycle: Intensity Targets versus Caps or Taxes

    Get PDF
    For reducing greenhouse gas emissions, intensity targets are attracting interest as a flexible mechanism that would better allow for economic growth than emissions caps. For the same expected emissions, however, the economic responses to unexpected productivity shocks differ. Using a real business cycle model, we find that a cap dampens the effects of productivity shocks in the economy on all variables except for the shadow value of the emissions constraint. An emissions tax leads to the same expected outcomes as a cap but with greater volatility. Certainty-equivalent intensity targets maintain higher levels of labor, capital, and output than other policies, with lower expected costs and no more volatility than with no policy.emissions tax, cap-and-trade, intensity target, business cycle

    Minimal surfaces from circle patterns: Geometry from combinatorics

    Full text link
    We suggest a new definition for discrete minimal surfaces in terms of sphere packings with orthogonally intersecting circles. These discrete minimal surfaces can be constructed from Schramm's circle patterns. We present a variational principle which allows us to construct discrete analogues of some classical minimal surfaces. The data used for the construction are purely combinatorial--the combinatorics of the curvature line pattern. A Weierstrass-type representation and an associated family are derived. We show the convergence to continuous minimal surfaces.Comment: 30 pages, many figures, some in reduced resolution. v2: Extended introduction. Minor changes in presentation. v3: revision according to the referee's suggestions, improved & expanded exposition, references added, minor mistakes correcte

    The worst approximable rational numbers

    Full text link
    We classify and enumerate all rational numbers with approximation constant at least 13\frac{1}{3} using hyperbolic geometry. Rational numbers correspond to geodesics in the modular torus with both ends in the cusp, and the approximation constant measures how far they stay out of the cusp neighborhood in between. Compared to the original approach, the geometric point of view eliminates the need to discuss the intricate symbolic dynamics of continued fraction representations, and it clarifies the distinction between the two types of worst approximable rationals: (1) There is a plane forest of Markov fractions whose denominators are Markov numbers. They correspond to simple geodesics in the modular torus with both ends in the cusp. (2) For each Markov fraction, there are two infinite sequences of companions, which correspond to non-simple geodesics with both ends in the cusp that do not intersect a pair of disjoint simple geodesics, one with both ends in the cusp and one closed.Comment: 50 pages, 18 figures. v2: Flahive and Gurwood references added; abstract, introduction, and acknowledgements update

    Hyperbolic constant mean curvature one surfaces: Spinor representation and trinoids in hypergeometric functions

    Full text link
    We present a global representation for surfaces in 3-dimensional hyperbolic space with constant mean curvature 1 (CMC-1 surfaces) in terms of holomorphic spinors. This is a modification of Bryant's representation. It is used to derive explicit formulas in hypergeometric functions for CMC-1 surfaces of genus 0 with three regular ends which are asymptotic to catenoid cousins (CMC-1 trinoids).Comment: 29 pages, 9 figures. v2: figures of cmc1-surfaces correcte
    • …
    corecore