56 research outputs found

    A leed analysis of the (2×1)H-Ni(110) structure

    Get PDF
    A monolayer of H atoms adsorbed on Ni(110) below 180 K forms a (2×1) structure. The unit cell exhibits a glide symmetry plane and contains two adsorbed atoms. Based on a quantitative comparison between experimental and calculated LEED I/V spectra using standard R-factors the following structure was derived: On the clean Ni(110) surface the separation between the first two atomic layers, d12, is contracted by 8.5%±1.5% with respect to the bulk value; those between the second and third and the third and fourth layer, d23 and d34, are expanded by 3.5%±1.5% and 1%±1.5%, respectively—in agreement with recent other results. In the presence of the H adlayer the contraction of d12 is reduced to 4.5%±1.5%, while the expansion of d23 is not affected within the limits of accuracy. The third interlayer spacing d34 returns to its bulk value. The H atoms occupy threefold-coordinated sites formed by two Ni atoms from the first layer and one Ni atom from the second layer which confirms previous more qualitative conclusions based on He diffraction and vibrational spectroscopy. The bond lengths between H and its neighbouring Ni atoms were determined to be equal, namely 1.72±0.1 Å

    Protein Phosphatase 2A Controls Ethylene Biosynthesis by Differentially Regulating the Turnover of ACC Synthase Isoforms

    Get PDF
    The gaseous hormone ethylene is one of the master regulators of development and physiology throughout the plant life cycle. Ethylene biosynthesis is stringently regulated to permit maintenance of low levels during most phases of vegetative growth but to allow for rapid peaks of high production at developmental transitions and under stress conditions. In most tissues ethylene is a negative regulator of cell expansion, thus low basal levels of ethylene biosynthesis in dark-grown seedlings are critical for optimal cell expansion during early seedling development. The committed steps in ethylene biosynthesis are performed by the enzymes 1-aminocyclopropane 1-carboxylate synthase (ACS) and 1-aminocyclopropane 1-carboxylate oxidase (ACO). The abundance of different ACS enzymes is tightly regulated both by transcriptional control and by post-translational modifications and proteasome-mediated degradation. Here we show that specific ACS isozymes are targets for regulation by protein phosphatase 2A (PP2A) during Arabidopsis thaliana seedling growth and that reduced PP2A function causes increased ACS activity in the roots curl in 1-N-naphthylphthalamic acid 1 (rcn1) mutant. Genetic analysis reveals that ethylene overproduction in PP2A-deficient plants requires ACS2 and ACS6, genes that encode ACS proteins known to be stabilized by phosphorylation, and proteolytic turnover of the ACS6 protein is retarded when PP2A activity is reduced. We find that PP2A and ACS6 proteins associate in seedlings and that RCN1-containing PP2A complexes specifically dephosphorylate a C-terminal ACS6 phosphopeptide. These results suggest that PP2A-dependent destabilization requires RCN1-dependent dephosphorylation of the ACS6 C-terminus. Surprisingly, rcn1 plants exhibit decreased accumulation of the ACS5 protein, suggesting that a regulatory phosphorylation event leads to ACS5 destabilization. Our data provide new insight into the circuitry that ensures dynamic control of ethylene synthesis during plant development, showing that PP2A mediates a finely tuned regulation of overall ethylene production by differentially affecting the stability of specific classes of ACS enzymes

    Transcriptomic Events Involved in Melon Mature-Fruit Abscission Comprise the Sequential Induction of Cell-Wall Degrading Genes Coupled to a Stimulation of Endo and Exocytosis

    Get PDF
    Background: Mature-fruit abscission (MFA) in fleshy-fruit is a genetically controlled process with mechanisms that, contrary to immature-fruit abscission, has not been fully characterized. Here, we use pyrosequencing to characterize the transcriptomes of melon abscission zone (AZ) at three stages during AZ-cell separation in order to understand MFA control at an early stage of AZ-activation. Principal Findings: The results show that by early induction of MFA, the melon AZ exhibits major gene induction, while by late induction of MFA, melon AZ shows major gene repression. Although some genes displayed similar regulation in both early and late induction of abscission, such as EXT1-EXT4, EGase1, IAA2, ERF1, AP2D15, FLC, MADS2, ERAF17, SAP5 and SCL13 genes, the majority had different expression patterns. This implies that time-specific events occur during MFA, and emphasizes the value of characterizing multiple time-specific abscission transcriptomes. Analysis of gene-expression from these AZs reveal that a sequential induction of cell-wall-degrading genes is associated with the upregulation of genes involved in endo and exocytosis, and a shift in plant-hormone metabolism and signaling genes during MFA. This is accompanied by transcriptional activity of small-GTPases and synthaxins together with tubulins, dynamins, V-type ATPases and kinesin-like proteins potentially involved in MFA signaling. Early events are potentially controlled by down-regulation of MADS-box, AP2/ERF and Aux/IAA transcription-factors, and up-regulation of homeobox, zinc finger, bZIP, and WRKY transcription-factors, while late events may be controlled by up-regulation of MYB transcription-factors. Significance: Overall, the data provide a comprehensive view on MFA in fleshy-fruit, identifying candidate genes and pathways associated with early induction of MFA. Our comprehensive gene-expression profile will be very useful for elucidating gene regulatory networks of the MFA in fleshy-fruit

    Low-energy electron diffraction analysis of the structure of a Cs-O/Ru(0001) coadsorbate phase

    Get PDF
    The structure of the (√3 × √3 )R30° overlayer formed by coadsorption of Cs and O atoms (θCs=θ0=0.33) on a Ru(0001) surface was determined by low-energy electron diffraction. Both adsorbates occupy hcp-type hollow sites. If compared with the structures of the respective pure adsorbate phases, the bond lengths are modified in a way consistent with an effective transfer of electronic charge from Cs to O
    • …
    corecore