8 research outputs found

    k-core (bootstrap) percolation on complex networks: Critical phenomena and nonlocal effects

    Full text link
    We develop the theory of the k-core (bootstrap) percolation on uncorrelated random networks with arbitrary degree distributions. We show that the k-core percolation is an unusual, hybrid phase transition with a jump emergence of the k-core as at a first order phase transition but also with a critical singularity as at a continuous transition. We describe the properties of the k-core, explain the meaning of the order parameter for the k-core percolation, and reveal the origin of the specific critical phenomena. We demonstrate that a so-called ``corona'' of the k-core plays a crucial role (corona is a subset of vertices in the k-core which have exactly k neighbors in the k-core). It turns out that the k-core percolation threshold is at the same time the percolation threshold of finite corona clusters. The mean separation of vertices in corona clusters plays the role of the correlation length and diverges at the critical point. We show that a random removal of even one vertex from the k-core may result in the collapse of a vast region of the k-core around the removed vertex. The mean size of this region diverges at the critical point. We find an exact mapping of the k-core percolation to a model of cooperative relaxation. This model undergoes critical relaxation with a divergent rate at some critical moment.Comment: 11 pages, 8 figure

    Heterogeneous slow dynamics in a two dimensional doped classical antiferromagnet

    Full text link
    We introduce a lattice model for a classical doped two dimensional antiferromagnet which has no quenched disorder, yet displays slow dynamics similar to those observed in supercooled liquids. We calculate two-time spatial and spin correlations via Monte Carlo simulations and find that for sufficiently low temperatures, there is anomalous diffusion and stretched-exponential relaxation of spin correlations. The relaxation times associated with spin correlations and diffusion both diverge at low temperatures in a sub-Arrhenius fashion if the fit is done over a large temperature-window or an Arrhenius fashion if only low temperatures are considered. We find evidence of spatially heterogeneous dynamics, in which vacancies created by changes in occupation facilitate spin flips on neighbouring sites. We find violations of the Stokes-Einstein relation and Debye-Stokes-Einstein relation and show that the probability distributions of local spatial correlations indicate fast and slow populations of sites, and local spin correlations indicate a wide distribution of relaxation times, similar to observ ations in other glassy systems with and without quenched disorder.Comment: 12 pages, 17 figures, corrected erroneous figure, and improved quality of manuscript, updated reference

    Tolerating gluten—a role for gut microbiota in celiac disease?

    No full text

    L'éruption du volcan Hunga Tonga -Hunga Ha'apai le 15 janvier 2022 : un ébranlement du systÚme Terre à l'échelle planétaire

    No full text
    L'Ă©ruption explosive du volcan Hunga Tonga - Hunga Ha’apai (HTHH), le 15 janvier 2022, a produit la plus puissante explosion enregistrĂ©e depuis les explosions du Krakatau et du Tambora dans les annĂ©es 1800, libĂ©rant une Ă©nergie Ă©quivalente Ă  110 mĂ©gatonnes de TNT. Les ondes gĂ©nĂ©rĂ©es sesont propagĂ©es dans le sol, et dans l’atmosphĂšre jusqu’à l’ionosphĂšre. L'onde atmosphĂ©rique la plus Ă©nergĂ©tique observĂ©e sur les baromĂštres correspond au mode de Lamb. De pĂ©riode supĂ©rieure Ă  2000 s, son amplitude est comparable Ă  celle observĂ©e lors de l’éruption du Krakatau en 1883. L’empreinte des perturbations atmosphĂ©riques a Ă©tĂ© caractĂ©risĂ©e Ă  l’échelle planĂ©taire par des rĂ©seaux de mesures au sol, Ă  bord de satellites ou de plateformes aĂ©roportĂ©es. L’analyse combinĂ©e de ces observations a permis d’évaluer les consĂ©quences Ă  court terme de l'Ă©ruption du HTHH. Les mĂ©thodes d'investigation gĂ©ophysiques prĂ©sentĂ©es dans cette note montrent l’apport d’analyses interdisciplinaires pour caractĂ©riser la rĂ©ponse impulsionnelle des enveloppes fluides planĂ©taires (atmosphĂšre, ocĂ©ans et mers) Ă  une Ă©ruption d’une intensitĂ© exceptionnelle

    L'éruption du volcan Hunga Tonga -Hunga Ha'apai le 15 janvier 2022 : un ébranlement du systÚme Terre à l'échelle planétaire

    No full text
    L'Ă©ruption explosive du volcan Hunga Tonga - Hunga Ha’apai (HTHH), le 15 janvier 2022, a produit la plus puissante explosion enregistrĂ©e depuis les explosions du Krakatau et du Tambora dans les annĂ©es 1800, libĂ©rant une Ă©nergie Ă©quivalente Ă  110 mĂ©gatonnes de TNT. Les ondes gĂ©nĂ©rĂ©es sesont propagĂ©es dans le sol, et dans l’atmosphĂšre jusqu’à l’ionosphĂšre. L'onde atmosphĂ©rique la plus Ă©nergĂ©tique observĂ©e sur les baromĂštres correspond au mode de Lamb. De pĂ©riode supĂ©rieure Ă  2000 s, son amplitude est comparable Ă  celle observĂ©e lors de l’éruption du Krakatau en 1883. L’empreinte des perturbations atmosphĂ©riques a Ă©tĂ© caractĂ©risĂ©e Ă  l’échelle planĂ©taire par des rĂ©seaux de mesures au sol, Ă  bord de satellites ou de plateformes aĂ©roportĂ©es. L’analyse combinĂ©e de ces observations a permis d’évaluer les consĂ©quences Ă  court terme de l'Ă©ruption du HTHH. Les mĂ©thodes d'investigation gĂ©ophysiques prĂ©sentĂ©es dans cette note montrent l’apport d’analyses interdisciplinaires pour caractĂ©riser la rĂ©ponse impulsionnelle des enveloppes fluides planĂ©taires (atmosphĂšre, ocĂ©ans et mers) Ă  une Ă©ruption d’une intensitĂ© exceptionnelle
    corecore