295 research outputs found

    The Impact of Coordinated Policies on Air Pollution Emissions from Road Transportation in China

    Get PDF
    Improving air quality across mainland China is an urgent policy challenge. While much of the problem is linked to China’s broader reliance on coal and other fossil fuels across the energy system, road transportation is an important and growing source of air pollution. Here we use an energy-economic model, embedded in the broader Regional Emissions Air Quality Climate and Health (REACH) modeling framework, to analyze the impacts of implementing vehicle emissions together with a broader economy-wide climate policy on total air pollution and its spatial distribution. We find that full and immediate implementation of existing vehicle emissions standards at China 3/III level or tighter will significantly reduce the contribution of transportation to degraded air quality by 2030. We further show that transportation emissions standards function as an important complement to an economy-wide price on CO2, which delivers significant co-benefits for air pollution reduction that are concentrated primarily in non-transportation sectors. Going forward, vehicle emissions standards and an economy-wide carbon price form a highly effective coordinated policy package that supports China’s air quality and climate change mitigation goals.Research Partners: Emory University, Tsinghua University, and Massachusetts Institute of Technology. This research builds on the work of the MIT-Tsinghua China Energy and Climate Project. The China Energy and Climate Project (CECP) involves close collaboration and personnel exchange between the MIT Joint Program on the Science and Policy of Global Change and the Institute for Energy, Environment and Economy at Tsinghua University

    Study of gravitational radiation from cosmic domain walls

    Full text link
    In this paper, following the previous study, we evaluate the spectrum of gravitational wave background generated by domain walls which are produced if some discrete symmetry is spontaneously broken in the early universe. We apply two different methods to calculate the gravitational wave spectrum: One is to calculate the gravitational wave spectrum directly from numerical simulations, and another is to calculate it indirectly by estimating the unequal time anisotropic stress power spectrum of the scalar field. Both analysises indicate that the slope of the spectrum changes at two characteristic frequencies corresponding to the Hubble radius at the decay of domain walls and the width of domain walls, and that the spectrum between these two characteristic frequencies becomes flat or slightly red tilted. The second method enables us to evaluate the GW spectrum semi-analytically for the frequencies which can not be resolved in the finite box lattice simulations, but relies on the assumptions for the unequal time correlations of the source.Comment: 17 pages, 9 figures; revised version of the manuscript, accepted for publication in JCA

    TransCom N2O model inter-comparison - Part 2:Atmospheric inversion estimates of N2O emissions

    Get PDF
    This study examines N2O emission estimates from five different atmospheric inversion frameworks based on chemistry transport models (CTMs). The five frameworks differ in the choice of CTM, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation data set. The posterior modelled atmospheric N2O mole fractions are compared to observations to assess the performance of the inversions and to help diagnose problems in the modelled transport. Additionally, the mean emissions for 2006 to 2008 are compared in terms of the spatial distribution and seasonality. Overall, there is a good agreement among the inversions for the mean global total emission, which ranges from 16.1 to 18.7 TgN yr(-1) and is consistent with previous estimates. Ocean emissions represent between 31 and 38% of the global total compared to widely varying previous estimates of 24 to 38%. Emissions from the northern mid- to high latitudes are likely to be more important, with a consistent shift in emissions from the tropics and subtropics to the mid- to high latitudes in the Northern Hemisphere; the emission ratio for 0-30A degrees N to 30-90A degrees N ranges from 1.5 to 1.9 compared with 2.9 to 3.0 in previous estimates. The largest discrepancies across inversions are seen for the regions of South and East Asia and for tropical and South America owing to the poor observational constraint for these areas and to considerable differences in the modelled transport, especially inter-hemispheric exchange rates and tropical convective mixing. Estimates of the seasonal cycle in N2O emissions are also sensitive to errors in modelled stratosphere-to-troposphere transport in the tropics and southern extratropics. Overall, the results show a convergence in the global and regional emissions compared to previous independent studies

    Uncertainties in emissions estimates of greenhouse gases and air pollutants in India and their impacts on regional air quality

    Get PDF
    Greenhouse gas and air pollutant precursor emissions have been increasing rapidly in India. Large uncertainties exist in emissions inventories and quantification of their uncertainties is essential for better understanding of the linkages among emissions and air quality, climate, and health. We use Monte Carlo methods to assess the uncertainties of the existing carbon dioxide (CO2), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) emission estimates from four source sectors for India. We also assess differences in the existing emissions estimates within the nine subnational regions. We find large uncertainties, higher than the current estimates for all species other than CO, when all the existing emissions estimates are combined. We further assess the impact of these differences in emissions on air quality using a chemical transport model. More efforts are needed to constrain emissions, especially in the Indo-Gangetic Plain, where not only the emissions differences are high but also the simulated concentrations using different inventories. Our study highlights the importance of constraining SO2, NOx, and NH3 emissions for secondary PM concentrations

    Global and regional emissions estimates for N2O

    Get PDF
    We present a comprehensive estimate of nitrous oxide (N2O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N2O are available from measurements at Cape Grim, Tasmania; Cape Matatula, American Samoa; Ragged Point, Barbados; Mace Head, Ireland; and at Trinidad Head, California using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. The Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also collected discrete air samples in flasks and in situ measurements from remote sites across the globe and analyzed them for a suite of species including N2O. In addition to these major networks, we include in situ and aircraft measurements from the National Institute of Environmental Studies (NIES) and flask measurements from the Tohoku University and Commonwealth Scientific and Industrial Research Organization (CSIRO) networks. All measurements show increasing atmospheric mole fractions of N2O, with a varying growth rate of 0.1-0.7% per year, resulting in a 7.4% increase in the background atmospheric mole fraction between 1979 and 2011. Using existing emission inventories as well as bottom-up process modeling results, we first create globally gridded a priori N2O emissions over the 37 years since 1975. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions for five source sectors from 13 regions in the world. This is the first time that all of these measurements from multiple networks have been combined to determine emissions. Our inversion indicates that global and regional N2O emissions have an increasing trend between 1995 and 2008. Despite large uncertainties, a significant increase is seen from the Asian agricultural sector in recent years, most likely due to an increase in the use of nitrogenous fertilizers, as has been suggested by previous studies.</p

    Synthesis and Properties of Hydrazine-Embedded Biphenothiazines and Application of Hydrazine-Embedded Heterocyclic Compounds to Fluorescence Cell Imaging

    Get PDF
    © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Hydrazine-embedded unsubstituted butterfly-shaped biphenothiazine and its sulfoxides were synthesized by dimerization of 1,9-dibromophenothiazine, which was prepared by realizing selective debromination at the 3,7-positions of 1,3,7,9-tetrabromophenothiazine. cis/trans-Biphenothiazine sulfoxide was selectively prepared by changing the oxidation temperature to control the inversion rate of the butterfly shape of the intermediate. Their butterfly-shapes, conformations, photophysical properties (UV-vis absorption, fluorescence), and redox properties were elucidated by X-ray analysis, DFT calculations, spectral and electrochemical measurements. Fluorescent hydrazine-embedded biphenothiazine sulfoxides and bicarbazoles were applied to cell imaging of HeLa cells. The bicarbazoles exhibited high fluorescence signals in the cells with low toxicity
    corecore