25 research outputs found

    Development of technology for standardization of parameters of winter route registration of game animals

    Get PDF
    The need to develop a new technology for planning survey routes is caused not only by the difficulty of implementing the recommendations of the current methodology for winter route accounting (ZMU) for the “equidistant placement” of survey routes with “observance of a proportional survey of land categories forest, field, swamp”, but also by the inability of the method of grouping the sample into categories of land to reduce the heterogeneity of the examined material. To standardize the placement of accounting routes, the technology of stratification of the territory is put, in which the virtual boundaries of the stratum serve to determine the extrapolation area and the location of the survey route. For the total area of the hunting farm, a tabular, or calculated (for farms with a different area), value of the route length standard, km/thousand ha, is established. The free navigation program SAS Planet determines the length and width of the territory within the boundaries of the hunting area and the principle layout of the registration routes in the strata. According to the algorithms, the following parameters are calculated: the total length of the routes, the average values of the length and width of the territory, the number of strata, the distance between the registration routes, the length of the route in the stratum, the area of the strata, which are necessary for designing the stratification of the territory. On the example of a specific farm with unknown values of parameters, except for the area of the territory, the suitability of algorithms for calculating parameters is shown; a map of the boundaries of the strata and the location of the accounting traces was created; the area of the strata and the design length of the registration route in each stratum were determined; digitized files of traces necessary for work on their reference to the terrain have been created; the technology of binding is given. The results of the study confirmed the manufacturability and simplicity of the method for localizing routes and extrapolation sites, as well as the compatibility of their ordered placement in compliance with a standardized sample size for territories with any area and boundary configuration

    Publisher Correction: Population genomics of post-glacial western Eurasia.

    Get PDF

    Population genomics of post-glacial western Eurasia.

    Get PDF
    Western Eurasia witnessed several large-scale human migrations during the Holocene <sup>1-5</sup> . Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations

    Dairying, diseases and the evolution of lactase persistence in Europe

    Get PDF
    Update notice Author Correction: Dairying, diseases and the evolution of lactase persistence in Europe (Nature, (2022), 608, 7922, (336-345), 10.1038/s41586-022-05010-7) Nature, Volume 609, Issue 7927, Pages E9, 15 September 2022In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years(1). Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions(2,3). Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectoriesthan uniform selection since the Neolithic period. In the UK Biobank(4,5) cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation-proxies for these drivers-provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.Peer reviewe

    The Origins and Spread of Domestic Horses from the Western Eurasian Steppes

    Get PDF
    Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2–4 at Botai, Central Asia around 3500 bc3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture11,12. © 2021, The Author(s).We thank all members of the AGES group at CAGT. We are grateful for the Museum of the Institute of Plant and Animal Ecology (UB RAS, Ekaterinburg) for providing specimens. The work by G. Boeskorov is done on state assignment of DPMGI SB RAS. This project was supported by the University Paul Sabatier IDEX Chaire d’Excellence (OURASI); Villum Funden miGENEPI research programme; the CNRS ‘Programme de Recherche Conjoint’ (PRC); the CNRS International Research Project (IRP AMADEUS); the France Génomique Appel à Grand Projet (ANR-10-INBS-09-08, BUCEPHALE project); IB10131 and IB18060, both funded by Junta de Extremadura (Spain) and European Regional Development Fund; Czech Academy of Sciences (RVO:67985912); the Zoological Institute ZIN RAS (АААА-А19-119032590102-7); and King Saud University Researchers Supporting Project (NSRSP–2020/2). The research was carried out with the financial support of the Russian Foundation for Basic Research (19-59-15001 and 20-04-00213), the Russian Science Foundation (16-18-10265, 20-78-10151, and 21-18-00457), the Government of the Russian Federation (FENU-2020-0021), the Estonian Research Council (PRG29), the Estonian Ministry of Education and Research (PRG1209), the Hungarian Scientific Research Fund (Project NF 104792), the Hungarian Academy of Sciences (Momentum Mobility Research Project of the Institute of Archaeology, Research Centre for the Humanities); and the Polish National Science Centre (2013/11/B/HS3/03822). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie (grant agreement 797449). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements 681605, 716732 and 834616)

    The origins and spread of domestic horses from the Western Eurasian steppes

    Get PDF
    Analysis of 273 ancient horse genomes reveals that modern domestic horses originated in the Western Eurasian steppes, especially the lower Volga-Don region.Domestication of horses fundamentally transformed long-range mobility and warfare(1). However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling(2-4) at Botai, Central Asia around 3500 bc(3). Other longstanding candidate regions for horse domestication, such as Iberia(5) and Anatolia(6), have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association(7) between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc(8,9) driving the spread of Indo-European languages(10). This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture(11,12).Descriptive and Comparative Linguistic

    The origins and spread of domestic horses from the Western Eurasian steppes

    Get PDF
    Domestication of horses fundamentally transformed long-range mobility and warfare. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling at Botai, Central Asia around 3500 bc. Other longstanding candidate regions for horse domestication, such as Iberia and Anatolia, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc driving the spread of Indo-European languages. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture

    Perennial changes and distribution of resources the main species of hunting animals of Russian

    No full text
    The paper presents the assessment of the state in numbers, distribution on the territory and trends of the dynamics at the turn of XX-XXI centuries of the most economically important species of hunting resources in Russia. Materials were obtained on the basis of data questionnaire of «harvest» Services of VNIIOZ which has no analogues in the world on the scale of the covered by territory and the duration of observations (over 80 years) and the analysis of cause-effect relationships of population dynamics. The distribution is shown of the hunting resources by the Federal districts of the country. Predictions of further changes in the number are given by separate species. In the period 1996 to 2015 in Russia it was observed a significant increase in resources of moose, wild boar, roe deer, fox, beaver, a slight increase - in bear, sable, hazel grouse. Reduced in resources is observed in hare, lynx, and in the last five years - in martens. Relatively stable populations are remained in wolf, marmots, wood grouse. Among the ungulates state is alarming in resources of wild boar on some territories in connection with the African swine fever (ASF). The number of wild boar is decreased catastrophically in the Southern and North Caucasian federal districts in connection with the ASF. The current unfavorable situation caused by the ASF may lead to decrease in the number of specie in large parts of the country. Recently, it is observed decrease in interest to hunting on the fur species. The only species which enjoys demand on the international market is sable whose resources over the last two decades remain high with the trend of short stature as a result of ongoing relocation of species. The largest resources of most species of game animals possess the Siberian, Far East and North-West federal districts of the country

    Snow Data Assimilation and Evaluation Methods for Hydrological, Land Surface, Meteorological and Climate Models – A COST Action HarmoSnow Assessment Questionnaire

    Get PDF
    This chapter is based on outcomes of the working group 3 Questionnaire of the COST Action ES1404 (www.harmosnow.eu) and provides a discussion of snow data assimilation in research and operational applications, which will be presented in detail in a manuscript (Helmert et al., 2018)
    corecore