1,436 research outputs found

    A 10-year record of Arctic summer sea ice freeboard from CryoSat-2

    Get PDF
    Satellite observations of pan-Arctic sea ice thickness have so far been constrained to winter months. For radar altimeters, conventional methods cannot differentiate leads from meltwater ponds that accumulate at the ice surface in summer months, which is a critical step in the ice thickness calculation. Here, we use over 350 optical and synthetic aperture radar (SAR) images from the summer months to train a 1D convolution neural network for separating CryoSat-2 radar altimeter returns from sea ice floes and leads with an accuracy >80%. This enables us to generate the first pan-Arctic measurements of sea ice radar freeboard for May–September between 2011 and 2020. Results indicate that the freeboard distributions in May and September compare closely to those from a conventional ‘winter’ processor in April and October, respectively. The freeboards capture expected patterns of sea ice melt over the Arctic summer, matching well to ice draft observations from the Beaufort Gyre Exploration Program (BGEP) moorings. However, compared to airborne laser scanner freeboards from Operation IceBridge and airborne EM ice thickness surveys from the Alfred Wegener Institute (AWI) IceBird program, CryoSat-2 freeboards are underestimated by 0.02–0.2 m, and ice thickness is underestimated by 0.28–1.0 m, with the largest differences being over thicker multi-year sea ice. To create the first pan-Arctic summer sea ice thickness dataset we must address primary sources of uncertainty in the conversion from radar freeboard to ice thickness

    An Inversion Method for Measuring Beta in Large Redshift Surveys

    Full text link
    A precision method for determining the value of Beta= Omega_m^{0.6}/b, where b is the galaxy bias parameter, is presented. In contrast to other existing techniques that focus on estimating this quantity by measuring distortions in the redshift space galaxy-galaxy correlation function or power spectrum, this method removes the distortions by reconstructing the real space density field and determining the value of Beta that results in a symmetric signal. To remove the distortions, the method modifies the amplitudes of a Fourier plane-wave expansion of the survey data parameterized by Beta. This technique is not dependent on the small-angle/plane-parallel approximation and can make full use of large redshift survey data. It has been tested using simulations with four different cosmologies and returns the value of Beta to +/- 0.031, over a factor of two improvement over existing techniques.Comment: 16 pages including 6 figures Submitted to The Astrophysical Journa

    The Clustering of Colour Selected Galaxies

    Get PDF
    We present measurements of the angular correlation function of galaxies selected from a B_J=23.5 multicolour survey of two 5 degree by 5 degree fields located at high galactic latitudes. The galaxy catalogue of approximately 400,000 galaxies is comparable in size to catalogues used to determine the galaxy correlation function at low-redshift. Measurements of the z=0.4 correlation function at large angular scales show no evidence for a break from a power law though our results are not inconsistent with a break at >15 Mpc. Despite the large fields-of-view, there are large discrepancies between the measurements of the correlation function in each field, possibly due to dwarf galaxies within z=0.11 clusters near the South Galactic Pole. Colour selection is used to study the clustering of galaxies z=0 to z=0.4. The galaxy correlation function is found to strongly depend on colour with red galaxies more strongly clustered than blue galaxies by a factor of 5 at small scales. The slope of the correlation function is also found to vary with colour with gamma=1.8 for red galaxies while gamma=1.5 for blue galaxies. The clustering of red galaxies is consistently strong over the entire magnitude range studied though there are large variations between the two fields. The clustering of blue galaxies is extremely weak over the observed magnitude range with clustering consistent with r_0=2 Mpc. This is weaker than the clustering of late-type galaxies in the local Universe and suggests galaxy clustering is more strongly correlated with colour than morphology. This may also be the first detection of a substantial low redshift galaxy population with clustering properties similar to faint blue galaxies.Comment: Accepted for publication in MNRAS. 13 pages, 20 figure

    A 120-Mpc Periodicity in the Three-Dimensional Distribution of Galaxy Superclusters

    Get PDF
    Using a new compilation of available data on galaxy clusters and superclusters we present evidence for a quasiregular three-dimensional network of rich superclusters and voids, with the regions of high density separated by about 120 Mpc. We calculate the power spectrum for clusters of galaxies; it has a peak on the wavelength equal to the step of the network; the excess in the amplitude of the spectrum over that of the cold dark matter model is by a factor of 1.4. The probability that the spectrum can be formed within the framework of the standard cosmogony is very small. If the cluster distribution reflects the distribution of all matter (luminous and dark), then there must exists some hithero unknown process that produces regular structure on large scales.Comment: Tex, 6 pages, 2 PostScript figures embedded, accepted by Nature on November 19, 199

    Optimal measurement of visual motion across spatial and temporal scales

    Full text link
    Sensory systems use limited resources to mediate the perception of a great variety of objects and events. Here a normative framework is presented for exploring how the problem of efficient allocation of resources can be solved in visual perception. Starting with a basic property of every measurement, captured by Gabor's uncertainty relation about the location and frequency content of signals, prescriptions are developed for optimal allocation of sensors for reliable perception of visual motion. This study reveals that a large-scale characteristic of human vision (the spatiotemporal contrast sensitivity function) is similar to the optimal prescription, and it suggests that some previously puzzling phenomena of visual sensitivity, adaptation, and perceptual organization have simple principled explanations.Comment: 28 pages, 10 figures, 2 appendices; in press in Favorskaya MN and Jain LC (Eds), Computer Vision in Advanced Control Systems using Conventional and Intelligent Paradigms, Intelligent Systems Reference Library, Springer-Verlag, Berli

    The Canada-France deep fields survey-I: 100,000 galaxies, 1 deg^2: a precise measurement of \omega(\theta) to IAB~25

    Full text link
    (abridged) Using the UH8K mosaic camera, we have measured the angular correlation function \omega(\theta) for 100,000 galaxies over four widely separated fields totalling ~1\deg^2 and reaching IAB~25.5. With this sample we investigate the dependence of \omega(\theta) at 1', A_\omega(1'), on sample median IAB magnitude in the range 19.5<I(AB-med)<24. Our results show that A_\omega(1') decreases monotonically to IAB~25. At bright magnitudes, \omega(\theta) is consistent with a power-law of slope \delta = -0.8 for 0.2'<\theta<3.0' but at fainter magnitudes we find \delta ~ -0.6. At the 3\sigma level, our observations are still consistent with \delta=-0.8. Furthermore, in the magnitude ranges 18.5<IAB<24.0 and 18.5<IAB<23.0 we find galaxies with 2.6<(V-I)AB<2.9 have A_\omega(1')'s which are ~10x higher than field values. We demonstrate that our model redshift distributions for the faint galaxy population are in good agreement with current spectroscopic observations. Using these predictions, we find that for low-omega cosmologies and assuming r_0=4.3/h Mpc, in the range 19.5<I(AB-med)<22, the growth of galaxy clustering is \epsilon~0. However, at 22<I(AB-med)<24.0, our observations are consistent with \epsilon>1. Models with \epsilon~0 cannot simultaneously match both bright and faint measurements of A_\omega(1`). We show how this result is a natural consequence of the ``bias-free'' nature of the \epsilon formalism and is consistent with the field galaxy population in the range 22.0<IAB<24.0 being dominated by galaxies of low intrinsic luminosity.Comment: 20 pages, 21 figures, requires natbib.sty, accepted for publication in Astronomy and Astrophysic

    Cumulants as non-Gaussian qualifiers

    Full text link
    We discuss the requirements of good statistics for quantifying non-Gaussianity in the Cosmic Microwave Background. The importance of rotational invariance and statistical independence is stressed, but we show that these are sometimes incompatible. It is shown that the first of these requirements prefers a real space (or wavelet) formulation, whereas the latter favours quantities defined in Fourier space. Bearing this in mind we decide to be eclectic and define two new sets of statistics to quantify the level of non-Gaussianity. Both sets make use of the concept of cumulants of a distribution. However, one set is defined in real space, with reference to the wavelet transform, whereas the other is defined in Fourier space. We derive a series of properties concerning these statistics for a Gaussian random field and show how one can relate these quantities to the higher order moments of temperature maps. Although our frameworks lead to an infinite hierarchy of quantities we show how cosmic variance and experimental constraints give a natural truncation of this hierarchy. We then focus on the real space statistics and analyse the non-Gaussian signal generated by points sources obscured by large scale Gaussian fluctuations. We conclude by discussing the practical implementations of these techniques

    Genetic Studies of Sulfadiazine-resistant and Methionine-requiring \u3cem\u3eNeisseria\u3c/em\u3e Isolated From Clinical Material

    Get PDF
    Deoxyribonucleate (DNA) preparations were extracted from Neisseria meningitidis (four isolates from spinal fluid and blood) and N. gonorrhoeae strains, all of which were resistant to sulfadiazine upon primary isolation. These DNA preparations, together with others from in vitro mutants of N. meningitidis and N. perflava, were examined in transformation tests by using as recipient a drug-susceptible strain of N. meningitidis (Ne 15 Sul-s Met+) which was able to grow in a methionine-free defined medium. The sulfadiazine resistance typical of each donor was introduced into the uniform constitution of this recipient. Production of p-aminobenzoic acid was not significantly altered thereby. Transformants elicited by DNA from the N. meningitidis clinical isolates were resistant to at least 200 ÎŒg of sulfadiazine/ml, and did not show a requirement for methionine (Sul-r Met+). DNA from six strains of N. gonorrhoeae, which were isolated during the period of therapeutic use of sulfonamides, conveyed lower degrees of resistance and, invariably, a concurrent methionine requirement (Sul-r/Met−). The requirement of these transformants, and that of in vitro mutants selected on sulfadiazine-agar, was satisfied by methionine, but not by vitamin B12, homocysteine, cystathionine, homoserine, or cysteine. Sul-r Met+ and Sul-r/Met− loci could coexist in the same genome, but were segregated during transformation. On the other hand, the dual Sul-r/Met− properties were not separated by recombination, but were eliminated together. DNA from various Sul-r/Met− clones tested against recipients having nonidentical Sul-r/Met− mutant sites yielded Sul-s Met+ transformants. The met locus involved is genetically complex, and will be a valuable tool for studies of genetic fine structure of members of Neisseria, and of genetic homology between species
    • 

    corecore