45 research outputs found

    Evaluation of transparent 20L polyproylene buckets for household solar water disinfection (SODIS) of drinking water in resource-poor environments.

    Get PDF
    Solar water disinfection (SODIS) is an appropriate technology for treating drinking water in developing communities, as it is effective, low- or zero-cost, easy to use. The WHO recognises SODIS as an appropriate intervention to provide drinking water after manmade or natural disasters. Nevertheless, uptake is low due partially to the burden of using small volume polyethylene terephthalate (PET) bottles (1.5-2 L). A major challenge is to develop a low cost transparent container for disinfecting larger volumes of water. This study examines the capability of transparent polypropylene (PP) buckets of 5 and 20 litres volume, as SODIS containers using three waterborne pathogen indicator organisms: E. coli, MS2-phage and Cryptosporidium parvum oocysts

    Microbiological evaluation of 5 L- And 20 L-transparent polypropylene buckets for solar water disinfection (SODIS)

    Get PDF
    Background: Solar water disinfection (SODIS) is an appropriate technology for household treatment of drinking water in low-to-middle-income communities, as it is effective, low cost and easy to use. Nevertheless, uptake is low due partially to the burden of using small volume polyethylene terephthalate bottles (1.5-2 L). A major challenge is to develop a low-cost transparent container for disinfecting larger volumes of water. (2) Methods: This study examines the capability of transparent polypropylene (PP) buckets of 5 L- and 20 L- volume as SODIS containers using three waterborne pathogen indicators: Escherichia coli, MS2-phage and Cryptosporidium parvum. (3) Results: Similar inactivation kinetics were observed under natural sunlight for the inactivation of all three organisms in well water using 5 L- and 20 L-buckets compared to 1.5 L-polyethylene-terephthalate (PET) bottles. The PP materials were exposed to natural and accelerated solar ageing (ISO-16474). UV transmission of the 20 L-buckets remained stable and with physical integrity even after the longest ageing periods (9 months or 900 h of natural or artificial solar UV exposure, respectively). The 5 L-buckets were physically degraded and lost significant UV-transmission, due to the thinner wall compared to the 20 L-bucket. (4) Conclusion: This work demonstrates that the 20 L SODIS bucket technology produces excellent bacterial, viral and protozoan inactivation and is obtained using a simple transparent polypropylene bucket fabricated locally at very low cost ($2.90 USD per unit). The increased bucket volume of 20 L allows for a ten-fold increase in treatment batch volume and can thus more easily provide for the drinking water requirements of most households. The use of buckets in households across low to middle income countries is an already accepted practice

    Prostate cancer and Hedgehog signalling pathway

    Get PDF
    [Abstract] The Hedgehog (Hh) family of intercellular signalling proteins have come to be recognised as key mediators in many fundamental processes in embryonic development. Their activities are central to the growth, patterning and morphogenesis of many different regions within the bodies of vertebrates. In some contexts, Hh signals act as morphogens in the dose-dependent induction of distinct cell fates within a target field, in others as mitogens in the regulation of cell proliferation or as inducing factors controlling the form of a developing organ. These diverse functions of Hh proteins raise many intriguing questions about their mode of action. Various studies have now demonstrated the function of Hh signalling in the control of cell proliferation, especially for stem cells and stem-like progenitors. Abnormal activation of the Hh pathway has been demonstrated in a variety of human tumours. Hh pathway activity in these tumours is required for cancer cell proliferation and tumour growth. Recent studies have uncovered the role for Hh signalling in advanced prostate cancer and demonstrated that autocrine signalling by tumour cells is required for proliferation, viability and invasive behaviour. Thus, Hh signalling represents a novel pathway in prostate cancer that offers opportunities for prognostic biomarker development, drug targeting and therapeutic response monitoring

    Zein-Based Nanoparticles as Oral Carriers for Insulin Delivery

    No full text
    Zein, the major storage protein from corn, has a GRAS (Generally Regarded as Safe) status and may be easily transformed into nanoparticles, offering significant payloads for protein materials without affecting their stability. In this work, the capability of bare zein nanoparticles (mucoadhesive) and nanoparticles coated with poly(ethylene glycol) (mucus-permeating) was evaluated as oral carriers of insulin (I-NP and I-NP-PEG, respectively). Both nanocarriers displayed sizes of around 270 nm, insulin payloads close to 80 µg/mg and did not induce cytotoxic effects in Caco-2 and HT29-MTX cell lines. In Caenorhabditis elegans, where insulin decreases fat storage, I-NP-PEG induced a higher reduction in the fat content than I-NP and slightly lower than the control (Orlistat). In diabetic rats, nanoparticles induced a potent hypoglycemic effect and achieved an oral bioavailability of 4.2% for I-NP and 10.2% for I-NP-PEG. This superior effect observed for I-NP-PEG would be related to their capability to diffuse through the mucus layer and reach the surface of enterocytes (where insulin would be released), whereas the mucoadhesive I-NP would remain trapped in the mucus, far away from the absorptive epithelium. In summary, PEG-coated zein nanoparticles may be an interesting device for the effective delivery of proteins through the oral route

    Species-specific heavy metal concentrations of tuna species: the case of Thunnus alalunga and Katsuwonus pelamis in the Western Mediterranean

    No full text
    Albacore Thunnus alalunga and skipjack tuna Katsuwonus pelamis are highly migratory species that are usually caught together in the Western Mediterranean. These species are top predators that are highly affected by the biomagnification process through the trophic chain. Bioaccumulation pattern of the main metal pollutants (mercury, Hg; lead, Pb; and cadmium, Cd) were analyzed in muscle tissues of 52 individuals (26 T. alalunga and 26 K. pelamis) of these highly consumed species in order to address two objectives: (1) compare the species-specific bioaccumulation between these large-pelagic species, and (2) assess the healthy properties of such valuable resources based on the trace metal limits established by the European Commission Regulation (ECR). Both generalized linear mixed models and redundancy analysis indicated a differential bioaccumulation between these two tuna species. While T. alalunga accumulates higher concentrations of Hg (0.1996 ± 0.0602 mg·kg-1 weight wet-ww), K. pelamis accumulates higher concentrations of Cd (0.0076 ± 0.0049 mg·kg-1 ww) and Pb (0.0031 ± 0.0017 mg·kg-1 ww). Size and trophic ecology support the differences detected in the bioaccumulation pattern. Heavy metal concentrations were below the tolerable limits considered by ECR (1, 0.1, and 0.3 mg·kg-1 ww for Hg, Cd, and Pb, respectively).En prensa2,65
    corecore