24 research outputs found

    A distinct adipose tissue gene expression response to caloric restriction predicts 6-mo weight maintenance in obese subjects

    Get PDF
    BACKGROUND: Weight loss has been shown to reduce risk factors associated with cardiovascular disease and diabetes; however, successful maintenance of weight loss continues to pose a challenge. OBJECTIVE: The present study was designed to assess whether changes in subcutaneous adipose tissue (scAT) gene expression during a low-calorie diet (LCD) could be used to differentiate and predict subjects who experience successful short-term weight maintenance from subjects who experience weight regain. DESIGN: Forty white women followed a dietary protocol consisting of an 8-wk LCD phase followed by a 6-mo weight-maintenance phase. Participants were classified as weight maintainers (WMs; 0-10% weight regain) and weight regainers (WRs; 50-100% weight regain) by considering changes in body weight during the 2 phases. Anthropometric measurements, bioclinical variables, and scAT gene expression were studied in all individuals before and after the LCD. Energy intake was estimated by using 3-d dietary records. RESULTS: No differences in body weight and fasting insulin were observed between WMs and WRs at baseline or after the LCD period. The LCD resulted in significant decreases in body weight and in several plasma variables in both groups. WMs experienced a significant reduction in insulin secretion in response to an oral-glucose-tolerance test after the LCD; in contrast, no changes in insulin secretion were observed in WRs after the LCD. An ANOVA of scAT gene expression showed that genes regulating fatty acid metabolism, citric acid cycle, oxidative phosphorylation, and apoptosis were regulated differently by the LCD in WM and WR subjects. CONCLUSION: This study suggests that LCD-induced changes in insulin secretion and scAT gene expression may have the potential to predict successful short-term weight maintenanc

    Adipose Gene Expression Prior to Weight Loss Can Differentiate and Weakly Predict Dietary Responders

    Get PDF
    BACKGROUND: The ability to identify obese individuals who will successfully lose weight in response to dietary intervention will revolutionize disease management. Therefore, we asked whether it is possible to identify subjects who will lose weight during dietary intervention using only a single gene expression snapshot. METHODOLOGY/PRINCIPAL FINDINGS: The present study involved 54 female subjects from the Nutrient-Gene Interactions in Human Obesity-Implications for Dietary Guidelines (NUGENOB) trial to determine whether subcutaneous adipose tissue gene expression could be used to predict weight loss prior to the 10-week consumption of a low-fat hypocaloric diet. Using several statistical tests revealed that the gene expression profiles of responders (8-12 kgs weight loss) could always be differentiated from non-responders (<4 kgs weight loss). We also assessed whether this differentiation was sufficient for prediction. Using a bottom-up (i.e. black-box) approach, standard class prediction algorithms were able to predict dietary responders with up to 61.1%+/-8.1% accuracy. Using a top-down approach (i.e. using differentially expressed genes to build a classifier) improved prediction accuracy to 80.9%+/-2.2%. CONCLUSION: Adipose gene expression profiling prior to the consumption of a low-fat diet is able to differentiate responders from non-responders as well as serve as a weak predictor of subjects destined to lose weight. While the degree of prediction accuracy currently achieved with a gene expression snapshot is perhaps insufficient for clinical use, this work reveals that the comprehensive molecular signature of adipose tissue paves the way for the future of personalized nutrition

    Author Correction: Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk

    Get PDF

    Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk

    Get PDF
    Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies

    Monoallelic expression in melanoma

    Get PDF
    Abstract Background Monoallelic expression (MAE) is a frequent genomic phenomenon in normal tissues, however its role in cancer is yet to be fully understood. MAE is defined as the expression of a gene that is restricted to one allele in the presence of a diploid heterozygous genome. Constitutive MAE occurs for imprinted genes, odorant receptors and random X inactivation. Several studies in normal tissues have showed MAE in approximately 5–20% of the cases. However, little information exists on the MAE rate in cancer. In this study we assessed the presence and rate of MAE in melanoma. The genetic basis of melanoma has been studied in depth over the past decades, leading to the identification of mutations/genetic alterations responsible for melanoma development. Methods To examine the role of MAE in melanoma we used 15 melanoma cell lines and compared their RNA-seq data with genotyping data obtained by the parental TIL (tumor infiltrating lymphocytes). Genotyping was performed using the Illumina HumanOmni1 beadchip. The RNA-seq library preparation and sequencing was performed using the Illumina TruSeq Stranded Total RNA Human Kit and subsequently sequenced using a HiSeq 2500 according to manufacturer’s guidelines. By comparing genotyping data with RNA-seq data, we identified SNPs in which DNA genotypes were heterozygous and corresponding RNA genotypes were homozygous. All homozygous DNA genotypes were removed prior to the analysis. To confirm the validity to detect MAE, we examined heterozygous DNA genotypes from X chromosome of female samples as well as for imprinted and olfactory receptor genes and confirmed MAE. Results MAE was detected in all 15 cell lines although to a different rate. When looking at the B-allele frequencies we found a preferential pattern of complete monoallelic expression rather then differential monoallelic expression across the 15 melanoma cell lines. As some samples showed high differences in the homozygous and heterozygous call rate, we looked at the single chromosomes and showed that MAE may be explained by underlying large copy number imbalances in some instances. Interestingly these regions included genes known to play a role in melanoma initiation and progression. Nevertheless, some chromosome regions showed MAE without CN imbalances suggesting that additional mechanisms (including epigenetic silencing) may explain MAE in melanoma. Conclusion The biological implications of MAE are yet to be realized. Nevertheless, our findings suggest that MAE is a common phenomenon in melanoma cell lines. Further analyses are currently being undertaken to evaluate whether MAE is gene/pathway specific and to understand whether MAE can be employed by cancers to achieve a more aggressive phenotype
    corecore